Skolbanken Logo
Skolbanken

Ämnen:

Matematik

·

Årskurs:

5

Stora tal!

Håsta skola, Hudiksvall · Senast uppdaterad: 30 augusti 2021

Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk verksamhet är till sin art en kreativ, reflekterande och problemlösande aktivitet som är nära kopplad till den samhälleliga, sociala, tekniska och digitala utvecklingen. Kunskaper i matematik ger människor förutsättningar att fatta välgrundade beslut i vardagslivets många valsituationer och ökar möjligheterna att delta i samhällets beslutsprocesser. I området stora tal repeterar vi och fördjupar kunskaper om tal, talsorter och vårt talsystem samt beräkningar i de fyra räknesätten för att ha en god grund inför kommande arbetsområden i matematik.

Mål:

När vi arbetat med området ska du kunna

  • läsa och skriva tal inom talområdet 0 - 1 000 000
  • ordna tal efter storlek
  • addera, subtrahera, multiplicera och dividera inom talområdet
  • använda olika uttrycksformer för att lösa problem
  • läsa och skriva tal i det romerska talsystemet

Begrepp: tiotusental, hundratusental, rimligt, romerska siffror

Undervisning:

I undervisningen kommer du att få ta del av

  • gemensamma övningar
  • diskussioner
  • lekar och spel
  • arbete i matteboken
  • problemlösning tillsammans och på egen hand

 

Bedömning:

Du visar att du utvecklar dina kunskaper och förmågor

  • i de övningar vi gör tillsammans, t ex föra resonemang om begreppen
  • i matematiska diskussioner
  • i arbetet med olika uppgifter och problem och redovisningar av dessa

Läroplanskopplingar

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

använda och analysera matematiska begrepp och samband mellan begrepp,

välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,

föra och följa matematiska resonemang, och

använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

Positionssystemet för tal i decimalform.

Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.

Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.

Strategier för matematisk problemlösning i vardagliga situationer.

Matematisk formulering av frågeställningar utifrån vardagliga situationer.

Det binära talsystemet och hur det kan tillämpas i digital teknik samt talsystem som använts i några kulturer genom historien, till exempel den babyloniska.

Eleven kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.

Eleven beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.

Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.

Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.

I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.

Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.

I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.

Matriser i planeringen

Innehåller inga matriser

Uppgifter

Innehåller inga uppgifter