Skolbanken – inspiration och utveckling från hela landet

MA: Tal och mönster Kapitel 1 ht-14

Skapad 2014-08-21 14:06 i Gammal Trelleborg
Vi arbetar i formulaboken och har praktiska övningar
Grundskola 6 Matematik
I det här kapitlet får du lära dig mer om olika mönster och lite mer om olika tal och räknesätt.

Innehåll

Syfte

Syftet med detta arbetsområdet är att lära sig grundläggande taluppfattning

Kopplingar till läroplan

  • Lgr11
    Skolan ska ansvara för att varje elev efter genomgången grundskola kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet,
  • Lgr11
    Skolan ska ansvara för att varje elev efter genomgången grundskola kan lösa problem och omsätta idéer i handling på ett kreativt och ansvarsfullt sätt,
  • Lgr11
    Skolan ska ansvara för att varje elev efter genomgången grundskola kan lära, utforska och arbeta både självständigt och tillsammans med andra och känna tillit till sin egen förmåga,
  • Ma
    Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma
    Syfte välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • Ma
    Syfte föra och följa matematiska resonemang, och
  • Ma
    Syfte använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

Detta ska vi arbeta med

Eleverna kommer att jobba med sin nya matematikbok, formula 6.
Vi kommer att ha praktiska övningar och vi kommer att diskutera matematik. 
Vi ska arbeta med mönster i olika figurer och tal, hur vårt talsystem är uppbyggt, jämföra och storleksordna tal, använda olika räknesätt och förstå samband mellan dem.

Kopplingar till läroplan

  • Ma  4-6
    Taluppfattning och tals användning Positionssystemet för tal i decimalform.
  • Ma  4-6
    Taluppfattning och tals användning Tal i bråk- och decimalform och deras användning i vardagliga situationer.
  • Ma  4-6
    Taluppfattning och tals användning Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.

Detta kommer vi att bedöma

Eleveran kommer att bedömmas på det de gör på matematiklektionerna, i synnerhet när vi jobbar praktiskt och har muntliga diskussioner. Eleverna kommer också att bedömmas på det matematikprov de kommer att ha i slutet av kapitlet.
Eleverna kommer att bedömas enligt matrisen nedan.

Matriser

Ma
Matematik åk 6

Problemlösning

F
E
C
A
Din förmåga att lösa problem genom att välja och använda strategier och metoder anpassade till problemets karaktär.
Du löser problem på ett i huvudsak fungerande sätt genom att välja metod/ strategi med viss anpassning till problemets karaktär.
Du löser problem på ett relativt väl fungerande sätt genom att välja metod/ strategi med förhållandevis god anpassning till problemets karaktär
Du löser problem på ett relativt väl fungerande sätt genom att välja metod/ strategi med förhållandevis god anpassning till problemets karaktär
Din förmåga att beskriva hur du tänkt göra/ har gjort.
Du beskriver på ett i huvudsak fungerande sätt.
Du beskriver på ett relativt väl fungerande sätt.
Du beskriver på ett väl fungerande sätt.

Matematiska begrepp.

F
E
C
A
Din förståelse för olika matematiska begrepp och din förmåga att tillämpa dessa i olika sammanhang.
Du har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Du har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Du har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Din förmåga att beskriva begrepp med hjälp av matematiska uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.

Metodanvändning

F
E
C
A
Din förmåga att använda olika matematiska metoder.
Du kan välja och använda i huvudsak fungerande matematiska metoder.
Du kan välja och använda ändamålsenliga matematiska metoder.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder.

Matematiska färdigheter inom olika områden

F
E
C
A
Din förmåga att göra beräkningar och lösa uppgifter inom: Aritmetik Algebra Geometri Sannolikhet Statistik Samband och förändring
Du kan göra beräkningar och lösa uppgifter med tillfredsställande resultat.
Du kan göra beräkningar och lösa uppgifter med gott resultat.
Du kan göra beräkningar och lösa uppgifter med gott resultat.

Kommunikation

F
E
C
A
Din förmåga att redogöra och samtala om tillvägagångssätt.
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Din förmåga att framföra och bemöta matematiska argument.
Du framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: