Skolbanken – inspiration och utveckling från hela landet

Matematik Kapitel 5 Bråk åk 7

Skapad 2016-09-30 11:20 i Tiundaskolan Uppsala
Bråk Kapitel 5 i "Matte Direkt" åk 7
Grundskola 7 Matematik

 

När du har arbetat med detta avsnitt ska du kunna:

  • vad ett bråk är
  • skriva ett bråk i bråkform och i blandad form
  • jämföra storleken på olika bråk
  • räkna ut en viss del av ett antal
  • addera och subtrahera bråk med olika nämnare
  • skriva om bråk i decimalform

Innehåll

Vad ska jag som elev utveckla.

Ämnets syfte

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att:

  • Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband mellan begrepp,
  • Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, föra och följa matematiska resonemang, och
  • Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

 

Vad ska vi arbeta med?

Centralt innehåll i årskurs 7-9

Taluppfattning och tals användning:

  • Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.

 

Problemlösning:

  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
  • Enkla matematiska modeller och hur de kan användas i olika situationer.

Hur ska vi arbeta?

Undervisningens innehåll

  • Gemensamma genomgångar
  • Enskilt arbete med individuellt stöd
  • Muntliga elevredovisningar
  • Gruppdiskussioner och problemlösning i grupp
  • Att jämföra och värdera egna och andras lösningar
  • Prov/läxor/självbedömning

Hur sker elevinflytandet inom arbetsområdet?

Eleverna väljer bland olika svårighetsnivåer. 

Hur ska jag som elev visa vad jag lärt mig?

Samtalsdialoger och skriftligt prov

Kunskapskrav

Veckoplanering

V 14: Diagnos klar. Starta med blå eller röda sidor Blå: 152-154, röd: 158-161

V 15: Blå: 155-157, röd: 159-163

Läxor: 17-20 (en läxa/vecka, valfri dag)

Prov:  Torsdagen den 21 april

Kopplingar till läroplanen

  • Kunskapskrav
  • Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
    Ma  E 9
  • Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
    Ma  E 9
  • Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
    Ma  E 9
  • Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
    Ma  E 9
  • I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
    Ma  E 9
  • Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
    Ma  E 9
  • Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
    Ma  E 9
  • I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
    Ma  E 9

Matriser

Ma
Kunskapskrav matematik

Dessa förmågor har du visat fram till och med den här terminen

F
E
C
A
Problemlösning
Eleven kan inte lösa olika problem i bekanta situationer på ett fungerande sätt genom att välja och använda strategier och metoder med anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Begrepp
Eleven har inte grundläggande kunskaper om matematiska begrepp och kan inte använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan inte beskriva olika begrepp med hjälp av matematiska uttrycksformer.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Metod
Eleven kan inte välja eller använda fungerande matematiska metoder för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Resonemang
Eleven för inte enkla och underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt ge något förslag på alternativt tillvägagångssätt
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt
Eleven kan inte växla mellan olika uttrycksformer eller föra enkla resonemang kring hur begreppen relaterar till varandra
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
I redovisningar och diskussioner för och följer eleven inte matematiska resonemang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Kommunikation
Eleven kan inte redogöra för och samtala om tillvägagångssätt och använder inte symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: