Skolbanken – inspiration och utveckling från hela landet

Arbetsområdet: Statistik, sannolikhet och kombinatorik

Skapad 2017-01-06 18:38 i Munkedalsskolan Munkedal
Planering för arbete med statistik och sannolikhet i årskurs 9.
Grundskola 5 Matematik
Hur kan man presentera fakta utan att skriva en massa text? Vad är en tabell? Vad är det för skillnad på olika diagram? Vilken information kan man hämta ur ett diagram? Vad är det för skillnad på medel- typ- och medianvärde? Varför får man så ofta nitlotter och varför vinner man så sällan storvinsten? Vad betyder chans och risk? På hur många olika sätt kan jag välja att klä mig om jag har tre olika tröjor och fyra olika byxor? Sådana här frågor kan du lättare besvara när vi är klara med arbetsområdet om statistik, sannolikhet och kombinatorik.

Innehåll

 

Tabeller och diagram: Tabeller möter du varje dag, till exempel skolschemat, buss- och tågtidtabeller, resultat för fotbollsmatcher och börslistor. I statistiken är en tabell en översiktlig sammanställning av sifferuppgifter.

Tabell: Du använder en tabell för att sammanställa fakta och för att få en bra överblick över den statiskt man har. Ett exempel på detta kan vara att du har skrivit ner temperaturen under en vecka och sammanställt fakta i en tabell

Frekvenstabeller: I frekvenstabellen visar du hur många gånger något händer. Frekvens är antalet gånger som varje sak händer. Frekvens betyder antal och är bra att använda vid undersökningar. 

Diagram Ett diagram är en bild över fakta ur en tabell. Du kan välja ett passande diagram beroende på vad du vill visa. Tre vanliga diagram är stapeldiagram, linjedaigram och cirkeldiagram. 

  • Stapeldiagram: Du använder ofta stapeldiagram när du vill jämföra och få en överblick över resultatet av en undersökning.                                       Staplarna kan vara liggande eller stående.
  • Linjediagram: När du vill beskriva en förändring över tid så är det bra att använda sig av linjediagram. Ett exempel på detta är temperaturstatistiken i tabellen ovan. Ett linjediagram består alltid av en linje i någon form.
  • Cirkeldiagram Ett bra sätt att visa en överblick över en undersökning är att använda sig av ett cirkeldiagram. Ett cirkeldiagram visar delarna som tårtbitar där var och en kallas för en sektor. Ofta presenterar man resultatet i procent- eller bråkform.

Lägesmåtten:

 Medelvärde - är summan av de observerade värdena delat med antalet observationer

median - man  radar upp alla värden i storleksordning; minst först och störst sist. Sedan letar man upp det tal som är i mitten

typvärde -   det värde som förekommer flest gånger      

Viktiga begrepp: frekvenstabell, utfall, kolumn, rad, linjediagram, stapeldiagram, cirkeldiagram,        
vågrät axel (x-axel),  lodrät axel (y-axel), lägesmått, medelvärde, typvärde, median

                                 

Sannolikhet När vi talar om sannolikhet så pratar vi om hur troligt det är att händelsen verkligen sker. Det är större sannolikhet att vissa händelser inträffar än andra.Om man slår en tärning en gång, hur stor är då sannolikheten att en 5a kommer upp?

Begreppen chans och risk Du använder begreppet chans när du hoppas att något ska inträffa det vill säga en positiv händelse. Begreppet risk använder du när du inte hoppas att en händelse ska inträffa.

Viktiga begrepp: sannolikhet, risk, chans

 

 

Kombinatorik:  handla om på hur många olika sätt man kan kombinera olika saker. Föreställ dig att du vill variera ditt klädval så mycket som det går. På hur många olika sätt kan man klä sig, om man har tre olika tröjor och två  par olika byxor?

Viktiga begrepp:  kombinera, kombinationer,

 

Undervisning:

  • vi kommer tillsammans att titta på och analysera olika tabeller och diagram från http://www.sverigeisiffror.scb.se/hitta-statist
  • du kommer att både enskilt och tillsammans med kompisar få göra egna undersökningar där du presenterar frekvenstabeller och diagram samt ställer egna frågor till kamrater runt resultaten av undersökningarna
  • gemensamma genomgångar där du lär/tränar på olika begrepp som har med området att göra
  • färdighetsträning på olika sätt (träna under lektioner  genom praktiska övningar, träna digitalt, träna i olika läromedel, samt färdighetsträna genom hemuppgifter
  • http://www.kimsmatematik.com/sannolikhet-och-statistik.html    - bra länk att träna alla delar inom det här arbetsområdet

 

 

 KKonkreta mål:

När du har arbetat med ovanstående områden ska du kunna:

  • läsa av och rita olika typer av diagram och tabeller
  • räkna ut medelvärde, typvärde och median
  • beräkna enkel sannolikhet - Räkna ut chans och risk
  •  räkna ut möjliga kombinationer i vardagssituationer
  • förstå och kunna använda matematiska begrepp som hör till arbetsområdet
  • använda olika strategier för att lösa matematiska problem som har med området att göra

 

 Bedömning

I samtal och diskussioner både i helklass, i grupparbeten och enskilt får du möjlighet att under lektionerna visa din kunskapsutveckling inom ämnet.  I slutet av arbetsområdet ska du få göra ett prov där du visar vad du lärt/behöver träna vidare på.

Din kunskapsutveckling dokumenteras i matrisen nedan och sammanfattningen för sedan in i BeMa´s matris  (Bedömningsmatris för Matematik åk 5),  Du ska också få göra en självskattning i matrisen nedan.

 

 
 

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Sannolikhet, chans och risk grundat på observationer, simuleringar eller statistiskt material från vardagliga situationer. Jämförelser av sannolikheten vid olika slumpmässiga försök.
    Ma  4-6
  • Enkel kombinatorik i konkreta situationer.
    Ma  4-6
  • Tabeller och diagram för att beskriva resultat från undersökningar, såväl med som utan digitala verktyg. Tolkning av data i tabeller och diagram.
    Ma  4-6
  • Lägesmåtten medelvärde, typvärde och median samt hur de kan användas i statistiska undersökningar.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6

Matriser

Ma
Bedömningsmatris för arbetsområdet Statistik, sannolikhet och kombinatorik

Behöver träna vidare med delområdet
Godtagbara kunskaper
Mer än godtagbara kunksaper
Diagram
Kan tolka/analysera tabeller och diagram. (stapel-, linje- och cirkeldiagram)
Kan skapa egna frekvens tabeller och stapel- och linjediagram.
Förstår och använder begreppen medelvärde, typvärde och median.
kombinatorik
Behärskar enkel kombinatorik i vardagliga situationer ( t.ex. hur man på olika sätt kan kombinera olika klädesplagg)
Sannolikhet
Resonerar och visar förståelse för begreppen sannolikhet, chans och risk. Kunna bestämma utfallen vid försök såsom kast med två mynt, tärningar etc
Begreppsförmåga
kan förstår och använda olika begrepp inom arbetsområdet
Problemlösningsförmåga
kan tolka, förstå och hittar sätt att lösa problemuppgifter inom arbetsområdet
Procedurförmåga
kan välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter.
Resonemangskompetens
kan förklara varför ett svar är rimligt
Kommunikationskompetens
kan visa/berätta om sina matematiska tankar och lösningar
.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: