Skolbanken – inspiration och utveckling från hela landet

Matematik kap 6 åk 7 Borgen Vt 17: Algebra och mönster

Skapad 2017-03-22 11:56 i Gammal Trelleborg
Kap 6 i Formulaboken, Matematik åk 7
Grundskola 7 Matematik
Beskriv arbetsområdet för eleven här. Ingressen kan rama in arbetsområdet och/eller väcka elevens nyfikenhet.

Innehåll

Syfte

Detta kommer vi att arbeta med

Vi kommer att teckna och beräkna uttryck med olika räknesätt

Tolka och förenkla bokstavsuttryck

Beräknavvärdet av uttryck

Använda oss av formler

Teckna och lösa enkla ekvationer

Muntliga gruppövningar.

Detta kommer jag att bedöma

Jag kommer att bedöma varje lektionstillfälle, gruppövningarna och provet.
Se matris

Kopplingar till läroplanen

  • kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet,
    Gr lgr11
  • kan lösa problem och omsätta idéer i handling på ett kreativt och ansvarsfullt sätt,
    Gr lgr11
  • kan lära, utforska och arbeta både självständigt och tillsammans med andra och känna tillit till sin egen förmåga,
    Gr lgr11
  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma

Matriser

Ma
Matematik åk 7-9

Problemlösning

F
E
C
A
Din förmåga att lösa problem genom att välja strategier och metoder och formulera matematiska modeller.
Du löser problem på ett i huvudsak fungerande sätt genom att välja metod/ strategi med viss anpassning till problemets karaktär. Du bidrar till att formulera modeller.
Du löser problem på ett relativt väl fungerande sätt genom att välja metod/ strategi med förhållandevis god anpassning till problemets karaktär. Du formulerar modeller som efter någon bearbetning fungerar.
Du löser problem på ett väl fungerande sätt genom att välja metod/ strategi med god anpassning till problemets karaktär. Du formulerar modeller som fungerar.

Matematiska begrepp.

F
E
C
A
Din förmåga att beskriva begrepp med hjälp av matematiska uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.

Metodanvändning

F
E
C
A
Din förmåga att använda olika matematiska metoder.
Du kan välja och använda i huvudsak fungerande matematiska metoder.
Du kan välja och använda ändamålsenliga matematiska metoder.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder.

Matematiska färdigheter inom olika områden

F
E
C
A
Din förmåga att göra beräkningar och lösa uppgifter inom: Aritmetik Algebra
Du kan göra beräkningar och lösa uppgifter med tillfredsställande resultat.
Du kan göra beräkningar och lösa uppgifter med gott resultat.
Du kan göra beräkningar och lösa uppgifter med mycket gott resultat.

Kommunikation

F
E
C
A
Din förmåga att redogöra och samtala om tillvägagångssätt.
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Din förmåga att framföra och bemöta matematiska argument.
Du framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: