Skolbanken – inspiration och utveckling från hela landet

Procent och sannolikhet

Skapad 2018-03-02 10:04 i Tunabergsskolan Uppsala
Vi arbetar med tal Potenser, prefix, kvadratrötter Algoritmer i bråkform
Grundskola 9 Matematik
Ett arbetsområde där vi arbetar med tal, procent och sannolikhet. När det gäller tal, så ska de kunna använda sig av olika uttrycksformer(decimalform, bråkform och procentform), kunna räkna med procent, bråk och decimalform se sambandet mellan dessa begrepp. Vi ska även jobba vidare med sannolikhet, kombinatorik.

Innehåll

Förmågor i fokus

Aktuella begrepp
         

positionssystem, negativa tal, i decimalform, tal i bråkform

procent, procentenheter

hela, delen

förändringsfaktor

kombinatorik

lådprincipen

multiplikationsprincipen

additionsprincipen

utfall

gynsamma

beroende händelser

oberoende händelser

utfallsdiagram

träddiagram

Undervisningen kommer att innehålla

  • Genomgångar med frågeställningar, samtal i par eller helklass.
  • Beräkningar som görs i boken, EP
  • Problemlösning EPA
  • Elevbedömning själv-kamrat-lärare

När vi har avslutat arbetsområdet ska du kunna

  • Kunna kommunicera/visa hur du löser uppgifterna
  • Utveckla sig i att resonera
  • Använda rätt begrepp
  • Utveckla sin förmåga att lösa problem(strategi, kommunikation, beräkningar, rimlighet)
  • Förstå positionssystemet, negativa tal, tal i bråkform, decimalform
  • Addera och subtrahera tal i bråkform
  • Multiplicera och dividera tal i bråkform
  • Räkna med %, delen det hela
  • Additionsprincipen
  • Multiplikationsprincipen
  • Förstå lådprincipen
  • Beräkna sannolikhet för en händelse
  • Använda utfallsdiagram
  • Beräkna sannolikheten för flera händelser
  • Använda träddiagram

Hur du får visa dina kunskaper

  • Hur du resonerar under lektionerna i skrift, par helklass.
  • Hur du använder aktuella begrepp och hur du ser sambanden mellan olika begrepp.
  • Kvalitén i dina metoder
  • Hur du kommunicerar/visar dina lösningar.
  • Hur du löser problem (strategi, kommunikation, beräkningar, rimlighet)
    •  

Bedömning

  • Problemlösningsuppgifter
  • Prov v. 13 torsdag

Uppgifter

  • planering

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
    Ma  7-9
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer.
    Ma  7-9
  • Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem.
    Ma  7-9
  • Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Procent och sannolikhet

Problemlösning

E
C
A
Lösa problem, använda strategier och metoder samt formulera modeller
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .

Begrepp

E
C
A
Ha kunskaper om och använda matematiska begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Beskriva begrepp med matematiska uttrycksformer
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.

Metod

E
C
A
Välja och använda matematiska metoder, göra beräkningar och lösa uppgifter
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, med tillfredställande resultat
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra med mycket gott resultat.

Resonemang

E
C
A
Resonera om val av tillvägagångssätt och resultatets rimlighet samt ge förslag på alternativ
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt
Växla uttrycksformer och resonera kring deras relation
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Framföra och bemöta matematiska argument
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.

Kommunikation

E
C
A
Redogöra för och samtala om tillvägagångssätt, använda matematiska uttrycksformer
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: