Skolbanken – inspiration och utveckling från hela landet

Matteborgen 6B VT18

Skapad 2018-04-08 21:13 i Tiundaskolan Uppsala
Grundskola 6 Matematik
Under vårterminen kommer vi att jobba med följande områden: 1. Tal 2. Enheter och skala 3. Cirkeln 4. Problemlösning

Innehåll

Vi kommer att utgå från läromedlet Matteborgen 6B. På lektionerna varvar vi genomgångar med gemensam problemlösning och enskilt arbete. Målet är att du ska se de olika momenten i matematik som pusselbitar som tillsammans bildar ett mönster som är lätt att förstå.

 

Exempel på det du kommer att lära dig: 

  • Negativa och positiva tal
  • Decimaltal
  • Aritmetikalgoritmer, dvs. hur du ställer upp division, subtraktion, addition och multiplikation.
  • Binära tal
  • Problemlösning
  • Cirkelns egenskaper
  • Räkna ut area och omkrets på en cirkel
  •  

Du bedöms utifrån de kunskaper du visar under lektionstid, på prov och på inlämningsuppgifter.

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Rationella tal och deras egenskaper.
    Ma  4-6
  • Positionssystemet för tal i decimalform.
    Ma  4-6
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
    Ma  4-6
  • Tal i procentform och deras samband med tal i bråk- och decimalform.
    Ma  4-6
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas.
    Ma  4-6
  • Konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala och dess användning i vardagliga situationer.
    Ma  4-6
  • Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas.
    Ma  4-6
  • Jämförelse, uppskattning och mätning av längd, area, volym, massa, tid och vinkel med vanliga måttenheter. Mätningar med användning av nutida och äldre metoder.
    Ma  4-6
  • Tabeller och diagram för att beskriva resultat från undersökningar, såväl med som utan digitala verktyg. Tolkning av data i tabeller och diagram.
    Ma  4-6
  • Grafer för att uttrycka olika typer av proportionella samband vid enkla undersökningar.
    Ma  4-6
  • Koordinatsystem och strategier för gradering av koordinataxlar.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
Kunskapskrav MATEMATIK åk 4-6 VT18

Problemlösning

  • Ma   formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Nästan där
E
C
A
Lösa problem med strategier och metoder.
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Beskriva tillvägagångssätt och resonera om rimlighet.
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett väl fungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.

Begrepp

  • Ma   använda och analysera matematiska begrepp och samband mellan begrepp,
Nästan där
E
C
A
Ha kunskaper om samt använda matematiska begrepp.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Beskriva begrepp med matematiska uttrycksformer.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Växla uttrycksformer och resonera om begreppens relation.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

Metod

  • Ma   välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
Nästan där
E
C
A
Välja och använda matematiska metoder.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.

Resonemang

  • Ma   föra och följa matematiska resonemang, och
Nästan där
E
C
A
Framföra och bemöta matematiska argument i resonemang.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.

Kommunikation

  • Ma   använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Nästan där
E
C
A
Redogöra för och samtala om tillvägagångssätt samt använda matematiska uttrycksformer.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: