👋🏼 Var med och förbättra Skolbanken med oss på Unikum. Svara på formuläret här

Skolbanken – inspiration och utveckling från hela landet

Talsystem

Skapad 2018-06-01 11:44 i Eklandaskolan Mölndals Stad
Grundskola 6 Matematik
Vi kommer lära oss vad potenser är för något och hur man kan räkna med olika baser. Vi kommer också titta på några historiska talsystem.

Innehåll

Tidsperiod v. 17-20

Syfte/förmågor att utgå ifrån

Se nedan

Centralt innehåll

Se nedan

 

Kunskapskrav och bedömning

Se matris

Så här kommer vi att arbeta:

Vi kommer att arbeta med potenser, vårt decimala talsystem, det binära talsystemet samt historiska talsystem som det babyloniska, romerska, mayafolkets och Egyptiska. Dessutom kommer vi att testa på att räkna med fem-bas.

Vi startar lektionerna med en incheckningsuppgift. Därefter genomgångar och uppgifter där vi jobbar i par och tillsammans. Vi avslutar lektionen med en utcheckningsuppgift.

Kopplingar till läroplanen

  • Syfte
  • föra och följa matematiska resonemang, och
    Ma
  • Centralt innehåll
  • Positionssystemet för tal i decimalform.
    Ma  4-6

Matriser

Ma
Bedömningsmatris Matematik Eklandaskolan mall

På väg mot E
E
C
A
Använda matematiska begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Välja & använda matematiska metoder
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Redogöra för & samtala om tillvägagångssätt
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Föra och följa matematiska resonemang
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.