👋🏼Vi håller på att göra om Skolbanken med nytt gränssnitt och nya förbättrade funktioner! Ta en smygtitt på Nya Skolbanken här

Skolbanken – inspiration och utveckling från hela landet

LPP Matematik: Geometri åk 7

Skapad 2018-10-16 20:22 i Glömstaskolan Huddinge
Baserat på Prio matematik kap.3 Geometri. Start vecka 43. Kapitlet avslutas med ett prov.
Grundskola 7 Matematik
I flera tusen år har människor haft behov av att mäta storleken av mark som ska delas upp, planteras eller säljas. Det har även funnits ett behov av att mäta och beräkna mängden material som behövs vid byggen och tekniska konstruktioner.

Geometri kommer från grekiskan och betyder i sin ursprungliga form jordmätning. Ordet är sammansatt av geo som betyder jord och metrei´a som betyder mäta.

I detta kapitel får du lära dig mer om olika geometriska figurer, avstånd, vinklar och area.

Innehåll

Mål

Förekommande begrepp som du ska lära dig:

  • enheter
  • prefix
  • dimension
  • parallella linjer
  • diagonal
  • vinkel
  • vinkelben
  • vinkelspets
  • sidovinkel
  • månghörning
  • vinkelsumma
  • triangel
  • parallelltrapets
  • parallellogram
  • romb
  • rektangel
  • kvadrat
  • omkrets
  • area

Bedömning

  • Bedömningen avser din förmåga att använda ditt matematiska kunnande för att tolka och hantera olika slag av uppgifter och situationer, reflektera över och tolka dina resultat samt bedöma deras rimlighet.
  • Självständighet och kreativitet är viktiga bedömningsgrunder liksom klarhet, noggrannhet och färdighet.
  • En viktig aspekt av kunnandet är din förmåga att uttrycka dina tankar muntligt och skriftligt med hjälp av det matematiska symbolspråket.
  • Din förmåga att välja lämplig metod vid problemlösning.
  • Din förmåga att följa, förstå och pröva matematiska resonemang.
  • Din förmåga att skriftligt redovisa dina tankegångar.
  • Din förmåga att muntligt följa och delta i diskussioner och genomgångar.

Kopplingar till läroplanen

  • Centralt innehåll
  • Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
    Ma  7-9
  • Avbildning och konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala vid förminskning och förstoring av två- och tredimensionella objekt.
    Ma  7-9
  • Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9

Matriser

Ma
Geometri

E
C
A
PROBLEMLÖSNING
Du kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera matematiska modeller som kan tillämpas i sammanhanget. Du för enkla och till viss del underbyggda resonemang om val och tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativa tillvägagångssätt.
Du kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär och samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget. Du för utvecklande och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatets rimlighet i förhållande till problemsituation samt kan ge något förslag på alternativa tillvägagångssätt.
Du kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Du för välutvecklande och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
BEGREPPSFÖRSTÅELSE
Du har grundläggande kunskaper om matematiska begrepp och visar genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Du kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relatera till varandra.
Du har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Du kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer samt föra utvecklande resonemang kring hur begreppen relaterar till varandra,
Du har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Du kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer samt föra välutvecklande resonemang kring hur begreppen relaterar till varandra.
METODVAL
Du kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändringar med tillfredställande resultat.
Du kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändringar med gott resultat.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
REDOGÖRA
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemanget framåt.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemanget framåt.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemanget framåt och fördjupar eller breddar dem.