Skolbanken – inspiration och utveckling från hela landet

MATEMATIK - Procent åk 8

Skapad 2019-01-29 09:36 i Tanumskolan 7-9 Tanum
Matte Direkt år 8 kap 3
Grundskola 8 Matematik
NOKflex Procent åk 8 är det material som vi utgår ifrån och kommer att arbeta med. Om du behöver träna mer så ser du var du finner mer uppgifter i planeringarna nedanför.

Innehåll

Om du är sjuk eller borta av annan anledning är det ditt ansvar att ta igen det som du har missat. Se till att följa planeringen så att det inte blir stressigt när det närmar sig provet. Tänk på att vi har studiehjälp på onsdagar! 

 

Matriser

Ma
Bedömningsmatris, åk 8

Nivå 1
Nivå 2
Nivå 3
Problemlösning (P)
Hur väl eleven använder samband och generaliseringar. Val av strategi/metod för att lösa uppgiften. Hur väl eleven kan lösa en uppgift där lösningsmetoden inte är given i frågeställningen.
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Begrepp (B)
I vilken grad eleverna visar kunskaper om matematiska begrepp och samband mellan dessa.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Metoder (M)
Kvaliteten på metoder eleven använder, hur väl procedurer och beräkningar genomförs. Med metod menas genomförande av metod/procedur.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik med mycket gott resultat.
Resonemang (R)
Kvaliteten på elevens slutsatser, analyser och reflektioner och andra former av matematiska resonemang.
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Eleven för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Eleven för välutvecklade och väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problem-situationen samt kan ge förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar och breddar dem.
Kommunikation (K)
Kvaliteten på elevens redovisning och hur väl eleven använder matematiskt språk och uttrycksformer.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, formler och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, formler och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, formler och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: