Skolbanken – inspiration och utveckling från hela landet

Geometri kap 3 Prio, 7c vt 19

Skapad 2019-06-05 16:12 i Torpskolan Lerum
Grundskola 7 Matematik
.

Innehåll

                            Förankring i kursplanens syfte och centralt innehåll

Syfte

·        Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

·        Använda och analysera matematiska begrepp och samband mellan begrepp,

·        Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,

·        Föra och följa matematiska resonemang, och

·        Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser

Centralt innehåll

·        Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.

·        Avbildning och konstruktion av geometriska objekt.

·        Metoder för beräkning av area och omkrets hos geometriska objekt, samt enhetsbyten i samband med detta.

Elevens mål

·        Förstå och använda prefix

·        Förstå och använda de vanliga enheterna

·        Kunna de geometriska begreppen

·        Uppskatta, mäta och räkna ut vinklar i olika geometriska figurer

·        Använda gradskiva

·        Metoder för beräkning av area och omkrets av geometriska figurer samt

·        Enhetsbyten i samband med detta

Begrepp du ska kunna

Enheter, Prefix, Dimension, Parallella linjer, Diagonal, Bisektris,  Vinkel, Vinkelben, Vinkelspets, Sidovinkel, Månghörning, Vinkelsumma, Triangel, Parallelltrapets, Parallellogram, Romb, Rektangel, Kvadrat, Omkrets, Area

Undervisningens innehåll (arbetssätt, arbetsformer)

·        Gemensamma genomgångar

·        Enskilt arbete

·        Gruppdiskussioner

 

 

Matriser

Ma
Generell bedömningsmatris matematik åk 7-9 vt-19

E
C
A
Formulera och lösa problem
  • Ma
Eleven kan lösa enkla problem på ett i huvudsak och kan bidra till att formulera enkla matematiska modeller
Eleven kan lösa problem på ett relativt väl fungerande sätt samt att formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem på ett väl fungerande sätt samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Begrepp och uttrycksformer
  • Ma
Eleven har grundläggande kunskaper om och kan beskriva matematiska begrepp, använder dem i välkända sammanhang, växlar mellan olika uttrycksformer.
Eleven har goda kunskaper om och kan beskriva matematiska begrepp, använder dem i välkända sammanhang, växlar mellan olika uttrycksformer.
Eleven har mycket goda kunskaper om och kan beskriva matematiska begrepp, använder dem i välkända sammanhang, växlar mellan olika uttrycksformer.
Metoder och beräkningar
  • Ma
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att beräkningar och lösa rutinuppgifter med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga (lämpliga) matematiska metoder med relativt god anpassning till sammanhanget för att beräkningar och lösa rutinuppgifter med gott resultat.
Eleven kan välja och använda ändamålsenliga (lämpliga) och effektiva matematiska metoder med god anpassning till sammanhanget för att beräkningar och lösa rutinuppgifter med mycket gott resultat.
Redovisningar av beräkningar, frågeställningar och slutsatser
  • Ma
  • Ma
Eleven kan redogöra för och samtala om tillvägagångsätt på ett i huvudsak fungerande sätt. Använder matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångsätt på ett ändamålsenligt sätt. Använder matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångsätt på ett ändamålsenligt och effektivt sätt. Använder matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Resonemang kring begrepp och redoovisningar
Eleven kan föra enkla resonemang hur de matematiska begreppen är relaterade till varandra. Detta kan eleven på ett i huvudsak fungerande sätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang som till viss del för resonemangen framåt.
Eleven kan föra enkla resonemang hur de matematiska begreppen är relaterade till varandra. Detta kan eleven på ett i relativt väl fungerande sätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang som för resonemangen framåt.
Eleven kan kan föra enkla resonemang hur de matematiska begreppen är relaterade till varandra. Detta kan eleven på ett väl fungerande sätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: