Skolbanken – inspiration och utveckling från hela landet

Matematik år 7 ht19 - Kap 1 Tal och tals användning

Skapad 2019-08-28 08:55 i Kronängsskolan Vaxholm Stad
Taluppfattning
Grundskola 7 – 9 Matematik
Ingen vet vem som var först med att räkna. Behovet av att kunna räkna kanske uppkom för att hålla ordning på antalet djur i flocken eller för att fördela maten. De allra första symbolerna för tal var enkla streck som ristades in i pinnar eller benbitar. Idag möter du tal överallt runt omkring dig, bland annat i datum, klockslag, gatunummer, bussnummer, priser och telefonnummer.

Innehåll

 

Kapitel 1 Tal och tals användning

När du har arbetat med det här kapitlet ska du kunna:

  • förstå hur vårt talsystem är uppbyggt
  • ordna tal i storleksordning och jämföra tal
  • göra beräkningar med de fyra räknesätten i huvudet, skriftligt och med digitala verktyg
  • enheter för vikt och volym
  • avrundning och överslagsräkning
  • delbarhetsregler
  • primtalsfaktorisering
  • använda de begrepp som hör till arbetsområdet
  • lösa problem som hör till arbetsområdet


Preliminär Veckoplanering

Undervisningen kommer att utgå från Gleerups Matematik 7 och kapitelhänvisningarna nedan gäller detta läromedel. 

Vecka 34

Introduktion

Vecka 35

Kapitel 1.1 Tal

Vecka 36

Kapitel 1.2 De fyra räknesätten

Vecka 37

Kapitel 1.3 Enheter för vikt och volym

Kapitel 1.4 Multiplikation och division med 10, 100 och 1000

Vecka 38

Kapitel 1.5 Multiplikation och division med tal mellan 0 och 1

Kapitel 1.6 Avrundning och överslagsräkning

Vecka 39

Kapitel 1.7 Delbarhet

Kapitel 1.8 Primtal

Vecka 40

Repetition och skriftligt prov

 

Läxor

Jag har lagt in en läxa till varje måndag i kalendern. Läxan kommer oftast att innebära att du ska titta på någon/några korta film/er som behandlar det/de avsnitt vi ska gå igenom under veckan.

 

Generellt

Det är viktigare att du förstår matematiken än att du räknar så många tal på så kort tid som möjligt utan att riktigt tänka efter.

Det är DITT ansvar att se till att vara i fas med planeringen om du varit sjuk, ledig eller av annan anledning inte följt planeringen. Det är viktigt att DU frågar om du undrar över någonting. 

Ta vara på lektionstiden. Ju mer du får gjort på lektionen desto mindre behöver du jobba hemma.

Lycka till!!! <3

 

Bedömning

Vi fokuserar i matematiken på fem förmågor. Dessa är:

  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • använda och analysera matematiska begrepp och samband mellan begrepp,
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • föra och följa matematiska resonemang, och
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. (kommunikation)

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
    Ma  7-9
  • Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
    Ma  7-9
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Matematik generell matris år 7-9

F
Du har ÄNNU INTE visat denna förmåga
E
C
A
Problemlösning
Eleven kan lösa olika problem i bekanta situationer på ett i HUVUDSAK fungerande sätt genom att välja och använda strategier och metoder med VISS anpassning till problemets karaktär samt BIDRA till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett RELATIVT VÄL fungerande sätt genom att välja och använda strategier och metoder med FÖRHÅLLANDEVIS GOD anpassning till problemets karaktär samt FORMULERA enkla matematiska modeller som efter NÅGON BEARBETNING kan tillämpas i sammanhanget. tillvägagångssätt.
Eleven kan lösa olika problem i bekanta situationer på ett VÄL fungerande sätt genom att välja och använda strategier och metoder med GOD anpassning till problemets karaktär samt formulera enkla matematiska modeller som KAN TILLÄMPAS i sammanhanget.
Begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i HUVUDSAK fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i HUVUDSAK fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra ENKLA resonemang kring hur begreppen relaterar till varandra.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett RELATIVT VÄL fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett RELATIVT VÄL fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra UTVECKLADE resonemang kring hur begreppen relaterar till varandra.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i NYA sammanhang på ett VÄL fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett VÄL fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra VÄLUTVECKLADE resonemang kring hur begreppen relaterar till varandra.algebra, geometri, sannolikhet, statistik samt samband och förändring med MYCKET GOTT resultat.
Matematiska Metoder
Eleven kan välja och använda i HUVUDSAK fungerande matematiska metoder med VISS anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med TILLFREDSSTÄLLANDE resultat.
Eleven kan välja och använda ÄNDAMÅLSENLIGA matematiska metoder med RELATIVT GOD anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med GOTT resultat.
Eleven kan välja och använda ÄNDAMÅLSENLIGA OCH EFFEKTIVA matematiska metoder med GOD anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med MYCKET GOTT resultat.
Resonemang
Eleven för ENKLA och till VISS DEL underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan BIDRA till att ge något förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som TILL VISS DEL för resonemangen framåt.
Eleven för UTVECKLADE och RELATIVT VÄL underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan GE NÅGOT förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som FÖR resonemangen framåt.
Eleven för VÄLUTVECKLADE och VÄL underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt KAN GE förslag på alternativa tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och FÖRDJUPAR eller BREDDAR dem.
Kommunikation
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i HUVUDSAK fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med VISS anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ÄNDAMÅLSENLIGT sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med FÖRHÅLLANDEVIS GOD anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ÄNDAMÅLSENLIGT OCH EFFEKTIVT sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med GOD anpassning till syfte och sammanhang. breddar dem.
Helhetsbedömning
Sammanfattning av de förmågor du påvisat under lektioner, laborationer samt examinationer.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: