Skolbanken – inspiration och utveckling från hela landet

Sannolikhet årskurs 8

Skapad 2019-11-21 13:06 i Västra Stenhagenskolan Uppsala
Sannolikhet, eleverna ska lära sig grunderna inom området sannolikhet. Detta gör de genom att göra tre olika undersökningar, som de sedan redovisar genom att skriva rapporter.
Grundskola 8 Matematik
Är det värt att spela lotteri? Chans och risk, betyder det samma sak? Kan man räkna ut sannolikheten för en vinst?

Innehåll

Tid:

Vecka 46 -49

Under dessa veckor kommer du få lära dig:

  • Begrepp som hör till sannolikheten t.ex. chans, risk, utfall
  • Beräkna sannolikheten för att en händelse kan inträffa
  • Genomföra praktiska försök och utifrån dem bestämma sannolikheten
  • Rita träddiagram
  • Räkna med kombinationer

 

Prov v.49 tisdag del1 och onsdag del2

ör att nå kunskapsmålen kommer du att arbeta med:

  • Utföra en undersökning
  • Skriva rapporter
  • Arbetsuppgifter i boken Matte Direkt år 8
  • Arbetsblad och repetitionsuppgifter

 

Du kommer att få visa dina kunskaper genom  att redovisa:

  • Grupparbeten, där du deltar aktivt i utförande och i diskussioner - en undersökning
  • Individuell skriftligt rapporter

 

Du kan träna på hemsidan:

http://dataverktyg.se/tarningar#antal=5&sidor=6&storlek=m&siffror=0

Titta på filmer från youtube

Uppgifter

  • Laboration

  • Planering

Kopplingar till läroplanen

  • Syfte
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer.
    Ma  7-9
  • Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem.
    Ma  7-9
  • Bedömningar av risker och chanser utifrån datorsimuleringar och statistiskt material.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9

Matriser

Ma
Förmågor i matematik åk 7 - 9

Dessa förmågor har du visat fram till och med den här terminen

F
E
C
A
Begrepp
Eleven har inte grundläggande kunskaper om matematiska begrepp och kan inte använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan inte beskriva olika begrepp med hjälp av matematiska uttrycksformer.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Metod
Eleven kan inte välja eller använda fungerande matematiska metoder för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Problemlösning
Eleven kan inte lösa olika problem i bekanta situationer på ett fungerande sätt genom att välja och använda strategier och metoder med anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Resonemang
Eleven för inte enkla och underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt ge något förslag på alternativt tillvägagångssätt
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt
Eleven kan inte växla mellan olika uttrycksformer eller föra enkla resonemang kring hur begreppen relaterar till varandra
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
I redovisningar och diskussioner för och följer eleven inte matematiska resonemang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Kommunikation
Eleven kan inte redogöra för och samtala om tillvägagångssätt och använder inte symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: