Skolbanken – inspiration och utveckling från hela landet

Matematik 9E VT Planering

Skapad 2020-01-17 01:13 i Maserskolan Borlänge
Grundskola 9 Matematik
Översiktsplanering för matematiken för 9E under vårterminen 2020. Ändringar kan ske under terminens gång(uppdateras kontinuerligt här i unikum). Utökas inför nästa arbetsområde.

Innehåll

Tidsplanering

Här kommer en översiktsplanering för vårens matematik fram till sportlovet:

 

Vecka

Måndag

Onsdag 1

Onsdag 2

Torsdag

3

4.1 Procent

4.2 Förändringsfaktor

4.1 Procent

Temauppgift Procent

4.2 Förändringsfaktor

4

4.2 Förändringsfaktor

2.4 Procent och ekvationer

Temauppgift Problemlösning med förändringsfaktorer

2.4 Procent och ekvationer

5

Blandade procentuppgifter

2.4  Procent och ekvationer

 

Blandade procentuppgifter

 

2.1 Uttryck och mönster

 

6

2.1 Uttryck och mönster

Avstämningstest procent

 

-

2.2 Förenkling av uttryck

7

2.2 Förenkling av uttryck+ 2.3 Ekvationer

2.3 Ekvationer

Problemlösning med ekvationer

+2.3 Ekvationer

2.5 Proportioner

8

2.5 Proportioner

2.5 Proportioner

3.1 Spegling och symmetri

 

 

9

SPORTLOV

SPORTLOV

SPORTLOV

SPORTLOV

 

 

Arbetssätt, metod och material

 

Under vårterminen kommer vi framförallt att jobba med Procent, Algebra, Geometri och Sannolikhet. Vi kommer även att repetera tidigare arbetsområden och jobba med gamla nationella prov i matematik. Vi utgår ifrån Matematikboken Z, arbetsblad och temauppgifter. 

Jag kommer att ha muntliga genomgångar och samtidigt använda mig av whiteboardtavlan eller powerpointpresentationer, för att utveckla och förklara teorin. Det är viktigt att du är delaktig genom att lyssna och ställa frågor/svara på frågor/vara med i diskussioner. Skriv gärna av anteckningarna på whiteboardtavlan eller fotografera dem. Du kommer att få jobba med uppgifter i matematikboken. Vi kommer även att ha gruppuppgifter och temauppgifter utöver arbetet med matematikboken. Extra uppgifter finns att få både för extra repetition och för att få ytterligare utmaningar. 

Bedömning

När jag bedömer dina förmågor inom ämnet matematik utgår jag ifrån följande förmågor:

- Hur du kan formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder

- Hur du kan använda och analysera matematiska begrepp och samband mellan begrepp

- Hur du kan välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter

- Hur du kan föra och följa matematiska resonemang

- Hur du kan använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

I min bedömning utgår jag ifrån det du visar under lektionstid samt på skriftliga uppgifter såsom prov samt avstämningsuppgifter. 

 

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
    Ma  7-9
  • Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
    Ma  7-9
  • Tal i potensform. Grundpotensform för att uttrycka små och stora tal samt användning av prefix.
    Ma  7-9
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer.
    Ma  7-9
  • Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven.
    Ma  7-9
  • Metoder för ekvationslösning.
    Ma  7-9
  • Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
    Ma  7-9
  • Avbildning och konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala vid förminskning och förstoring av två- och tredimensionella objekt.
    Ma  7-9
  • Likformighet och symmetri i planet.
    Ma  7-9
  • Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
    Ma  7-9
  • Geometriska satser och formler och behovet av argumentation för deras giltighet.
    Ma  7-9
  • Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer.
    Ma  7-9
  • Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem.
    Ma  7-9
  • Tabeller, diagram och grafer samt hur de kan tolkas och användas för att beskriva resultat av egna och andras undersökningar, såväl med som utan digitala verktyg. Hur lägesmått och spridningsmått kan användas för bedömning av resultat vid statistiska undersökningar.
    Ma  7-9
  • Bedömningar av risker och chanser utifrån datorsimuleringar och statistiskt material.
    Ma  7-9
  • Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
    Ma  7-9
  • Funktioner och räta linjens ekvation. Hur funktioner kan användas för att, såväl med som utan digitala verktyg, undersöka förändring, förändringstakt och samband.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9
  • Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas generellt.
    Ma  7-9
  • Hur algoritmer kan skapas och användas vid programmering. Programmering i olika programmeringsmiljöer.
    Ma  7-9
  • Hur algoritmer kan skapas, testas och förbättras vid programmering för matematisk problemlösning.
    Ma  7-9

Matriser

Ma
Matematik, Maserskolan grundmatris

E
C
A
Lösa problem med strategier, metoder & modeller
  • Ma
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållande-vis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Resonemang om tillvägagångssätt & rimlighet
  • Ma
Eleven för enkla och till viss del under-byggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt
Använda matematiska begrepp
  • Ma
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Beskriva med matematiska uttrycksformer
  • Ma
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Uttrycksformer & begreppens relation
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Välja och använda matematiska metoder
  • Ma
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolik-het, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinupp-gifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Redogöra för & samtala om tillvägagångssätt
  • Ma
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Framföra och bemöta matematiska argument i resonemang
  • Ma
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: