Skolbanken – inspiration och utveckling från hela landet

Samband , åk8 VT/20

Skapad 2020-02-06 12:44 i Södertälje Friskola AB Grundskolor
Grundskola 7 – 9 Matematik
I detta arbetsområdet får du arbeta med koordinatsystem, proportionalitet och andra linjära samband. -Rita koordinatsystem -Ange koordinater för en punkt i ett koordinatsystem -Beskriva proportionella samband diagram och formler -Tolka olika typer av samband

Innehåll

Tidsplaneringen är: v. 6 – 10

När du har arbetat med det här kunskapsområdet (Samband) ska du kunna:

    • rita koordinatsystem 
    • ange koordinater för en punkt i ett koordinatsystem 
    • tolka olika typer av samband
    • beskriva proportionella samband med hjälp av diagram och formler 
    • beskriva andra linjära samband med hjälp av tabeller, diagram och formler
    • känna igen och kan namnge de centrala begreppen som du hittar i tabellen.

Begrepp

Förklaring

koordinatsystem

Ett system för att ange en punkts läge med hjälp av tal.

x-axel

Den vågräta axeln i ett koordinatsystem. 

y-axel

Den lodräta axeln i ett koordinatsystem. 

x- koordinat

Ett tal för att ange en punkts läge längs x-axeln.

y- koordinat

Ett tal för att ange en punkts läge längs y-axeln.

origo

Nollpunkten i ett koordinatsystem.

formel

Uttryck som beskriver samband med hjälp av symboler 

linjära samband

Ett samband mellan två variabler t.ex. x och y, där grafen alltid bildar en rät linje.

jämförpris

Sambandet mellan en mängd av en vara och priset. Uttrycks som t.ex. kr/kg eller kr/liter. 

storhet

Ett annat ord för kvantitet, t.ex. vikt eller kostnad. Något som går att mäta eller beräknas. 

diagram

 Figur som beskriver ett samband eller statistiskt material. 

graf

Värden/talpar som prickas in i ett koordinatsystem och visar en funktion.

proportionell

Exempel: En kostnad är proportionell mot en vikt om kostnaden fördubblas när vikten fördubblas. 

proportionalitet

Ökar med lika mycket hela tiden. Grafen till en proportionalitet är en rät linje som går genom origo.

 

Vecka

Sidor

Moment

6

 138 - 141

Samband, linjära samband.

7

 

142 - 149

 

Fler linjära samband, proportionalitet, samband med hastighet, begrepp och resonemang, arbeta tillsammans.

152 - 161

Repetition blå kurs: du kan jobba med de blåa sidorna samtidigt med de gröna sidorna.

8

 

162 - 167

Röd kurs

10

 Extra uppgifter

 

Arbetsbladet + Repetition

 

Matteprov

  Fredag 06/03/2020 

Bedömning 

 Ditt arbete kommer att bedömas genom hur du:

  • praktiskt genomför olika aktiviteter
  • skriftligt och muntligt redovisar dina kunskaper och slutsatser
  • se bedömningsmatris.

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Funktioner och räta linjens ekvation. Hur funktioner kan användas för att, såväl med som utan digitala verktyg, undersöka förändring, förändringstakt och samband.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Bedömningsmatris Samband åk8

* formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder.

Betyg E
Betyg C
Betyg A
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.

* använda och analysera matematiska begrepp och samband mellan begrepp.

Betyg E
Betyg C
Betyg A
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

* välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter.

Betyg E
Betyg C
Betyg A
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.

* använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser och

Betyg E
Betyg C
Betyg A

* föra och följa matematiska resonemang.

Betyg E
Betyg C
Betyg A
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: