Skolbanken – inspiration och utveckling från hela landet

Addition och subtraktion 1 till 20

Skapad 2020-11-29 12:48 i Emanuelskolan Sjöbo
Grundskola 1 Matematik
Fortsätter att öva addition och subtraktion men inom talområdet 0-20. Vi lär oss nya strategier som att bilda tiogrupper, addera/subtrahera ental.

Innehåll

Du kommer att lära dig fler strategier och utveckla befintliga strategier. 

  • Addera och subtrahera genom att räkna vidare/bakåt.
  • Addera och subtrahera genom att bilda 10.
  • Addera och subtrahera ental.
  • Sambandet mellan addition och subtraktion.
  • Problemlösning

 

Kopplingar till läroplanen

  • kan använda det svenska språket i tal och skrift på ett rikt och nyanserat sätt,
    Gr lgr11
  • kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet,
    Gr lgr11
  • kan lösa problem och omsätta idéer i handling på ett kreativt och ansvarsfullt sätt,
    Gr lgr11
  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange antal och ordning
    Ma  1-3
  • De fyra räknesättens egenskaper och samband samt användning i olika situationer.
    Ma  1-3
  • Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  1-3
  • Rimlighetsbedömning i vardagliga situationer
    Ma  1-3
  • Strategier för matematisk problemlösning i enkla situationer.
    Ma  1-3
  • Matematisk formulering av frågeställningar utifrån enkla vardagliga situationer.
    Ma  1-3
  • Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien.
    Ma  1-3
  • Kunskapskrav
  • Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med viss anpassning till problemets karaktär.
    Ma   3
  • Eleven beskriver tillvägagångssätt och ger enkla omdömen om resultatens rimlighet.
    Ma   3
  • Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i vanligt förekommande sammanhang på ett i huvudsak fungerande sätt.
    Ma   3
  • Eleven kan beskriva begreppens egenskaper med hjälp av symboler och konkret material eller bilder.
    Ma   3
  • Eleven kan även ge exempel på hur några begrepp relaterar till varandra.
    Ma   3
  • Eleven har grundläggande kunskaper om naturliga tal och kan visa det genom att beskriva tals inbördes relation samt genom att dela upp tal.
    Ma   3
  • Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar med naturliga tal och lösa enkla rutinuppgifter med tillfredställande resultat.
    Ma   3
  • Eleven kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0-20, samt för beräkningar av enkla tal i ett utvidgat talområde.
    Ma   3
  • Eleven kan beskriva och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då konkret material, bilder, symboler och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
    Ma   3
  • Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet, slumpmässiga händelser, geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet.
    Ma   3
  • Eleven kan hantera enkla matematiska likheter och använder då likhetstecknet på ett fungerande sätt.
    Ma   3
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: