👋🏼Vi håller på att göra om Skolbanken med nytt gränssnitt och nya förbättrade funktioner! Ta en smygtitt på Nya Skolbanken här

Skolbanken – inspiration och utveckling från hela landet

Algebra åk 8

Skapad 2021-03-29 09:57 i Kämpetorpsskolan Stockholm Grundskolor
Grundskola 7 – 9 Matematik
I det här avsnittet ska vi fortsätta att räkna med bokstäver. Vi ska använda ekvationslösning som metod vid problemlösning

Innehåll

Vad ska vi arbeta med?

  • Att tolka, teckna och förenkla uttryck genom bland annat faktorisering.
  • Hur man använder prioriteringsreglerna vid tex faktorisering.
  • Hur man kan använda ekvationer vid problemlösning.
  • Hur man tolkar och beräknar olikheter

Hur ska vi arbeta?

Gemensamma genomgångar, enskilt arbete, EPA, problemlösning och begreppsaktiviteter

Vad ska du lära dig?

Metoder för ekvationslösning.

Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas generellt.

Hur algoritmer kan skapas och användas vid programmering. Programmering i olika programmeringsmiljöer.

 

    Se även matrisen

 

Hur ska du visa att du lärt dig?

Du ska vara aktiv under lektionerna

Bedömningsuppgifter

Visa förståelse under EPA-övningar

 

 

Planering Algebra åk 8 VT21

 

 

 

 

Ämnesinnehåll 

Det här ska du kunna 

15

5.1 Räkneregler och algebraiska uttryck

Faktorisera uttryck

Prioriteringsreglerna

16

5.1

 

 

Faktorisera uttryck

Prioriteringsreglerna

17

5.2 Ekvationer och olikheter

Bedömning 1: se v. 15-16

Olika typer av ekvationslösningar

 

18

5.2

 

Bedömning 2: se v. 17-18

Olika typer av ekvationslösningar

Teckna och lösa olikheter

19

Problemlösning och repetition

 

Bedömning 3: hela kapitel 5

Använda olika metoder för att lösa problem

 

 

 

 

 

 

Planeringen är byggd på den digitala boken som du hittar på nok.se. avsnitten har samma namn som de har i den digitala boken.

 

 

Matriser

Ma
Matematik

Rubrik 1

E
C
A
Lösa problem med strategier, metoder & modeller
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Resonemang om tillvägagångssätt & rimlighet
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Använda matematiska begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Beskriva med matematiska uttrycksformer
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Välja och använda matematiska metoder
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Redogöra för & samtala om tillvägagångssätt
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Framföra och bemöta matematiska argument i resonemang
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt. för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.