Ämnen:
Matematik
·
Geometriska objekt och deras egenskaper Beskriva ock konstruera symmetri Uppskatta och bestämma vinklar Använda gradskiva Uppskatt och beskriva omkrets och area av månghörningar Förklara samband mello omkrets - area och metoder för beräkningar Använda strategier vid problemlösning
Viktoriaskolan, Brickebergskyrkans skolstiftelse · Senast uppdaterad: 15 november 2017
Syfte (5)
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
använda och analysera matematiska begrepp och samband mellan begrepp,
välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
föra och följa matematiska resonemang, och
använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Centralt innehåll (9)
Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
Konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala och dess användning i vardagliga situationer.
Symmetri i vardagen, i konsten och i naturen samt hur symmetri kan konstrueras.
Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas.
Jämförelse, uppskattning och mätning av längd, area, volym, massa, tid och vinkel med vanliga måttenheter. Mätningar med användning av nutida och äldre metoder.
Strategier för matematisk problemlösning i vardagliga situationer.
Matematisk formulering av frågeställningar utifrån vardagliga situationer.
Kriterier (8)
Eleven kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Eleven beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Innehåller inga uppgifter