Ämnen:
Matematik
·
Vad är omkrets? Hur räknar jag ut den? När behöver jag veta en omkrets? Vad är area? Hur räknar jag ut den? När behöver jag veta hur stor en area är? Vad är volym? Hur räknar jag ut den? När behöver jag veta volym på olika föremål? Cirkel, kon, cylinder, rektangel, kub, rätblock... hur ser alla dessa former ut?
Färsingaskolan, Sjöbo · Senast uppdaterad: 22 oktober 2019
Syfte (5)
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
använda och analysera matematiska begrepp och samband mellan begrepp,
välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
föra och följa matematiska resonemang, och
använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Centralt innehåll (7)
Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
Geometriska satser och formler och behovet av argumentation för deras giltighet.
Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
Enkla matematiska modeller och hur de kan användas i olika situationer.
Kriterier (8)
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Innehåller inga uppgifter