Ämnen:
Matematik
·
Årskurs:
3
Det här arbetar vi med under årskurs 3.
Sundbyskolan, Stockholm Grundskolor · Senast uppdaterad: 9 mars 2020
Centralt innehåll (21)
Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange antal och ordning
Del av heltal och del av antal. Hur delarna kan benämnas och uttryckas som enkla bråk samt hur enkla bråk förhåller sig till naturliga tal.
Naturliga tal och enkla tal i bråkform och deras användning i vardagliga situationer.
De fyra räknesättens egenskaper och samband samt användning i olika situationer.
Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
Rimlighetsbedömning i vardagliga situationer
Matematiska likheter och likhetstecknets betydelse.
Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas
Grundläggande geometriska objekt, däribland punkter, linjer, sträckor, fyrhörningar, trianglar, cirklar, klot, koner, cylindrar och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
Konstruktion av geometriska objekt. Skala vid enkel förstoring och förminskning.
Vanliga lägesord för att beskriva föremåls och objekts läge i rummet.
Symmetri, till exempel i bilder och i naturen, och hur symmetri kan konstrueras.
Jämförelser och uppskattningar av matematiska storheter. Mätning av längd, massa, volym och tid med vanliga nutida och äldre måttenheter.
Slumpmässiga händelser i experiment och spel.
Enkla tabeller och diagram och hur de kan användas för att sortera data och beskriva resultat från enkla undersökningar, såväl med som utan digitala verktyg.
Olika proportionella samband, däribland dubbelt och hälften.
Strategier för matematisk problemlösning i enkla situationer.
Matematisk formulering av frågeställningar utifrån enkla vardagliga situationer.
Hur entydiga stegvisa instruktioner kan konstrueras, beskrivas och följas som grund för programmering. Symbolers användning vid stegvisa instruktioner.
Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien.
Innehåller inga matriser