Ämnen:
Matematik
·
Årskurs:
7 - 9
Årstaskolan, Stockholm Grundskolor · Senast uppdaterad: 29 mars 2022
Inom algebra använder manbokstäver och symboler för att lösa uppgifter och hantera tal. I detta kapitel får du lära dig att använda algebra för att skriva uttryck, räkna med formler, lösa ekvationer och matematiska uttryck.
Lärandemål:
· Kunna lösa ekvationer
· Kunna skilja mellan ett uttryck och en ekvation
· Kunna tolka uttryck skrivna med variabler
· Förenkla uttryck
· Kunna lösa problem med hjälp av ekvationer
· Kunna beskriva ett mönster med hjälp av ett uttryck
Begrepp du ska kunna:
Algebra, likhet, numeriska uttryck, ekvation, algebraiska uttryck, obekant, variabel, förenkla uttryck, ekvationslösning,
vänster led, höger led, prövning, mönster
Vecka |
Det här ska du lära dig under veckan |
Övrigt |
13 |
5.1 Algebraiska uttryck 5.2 Förenkla uttryck |
Övningsblad 5:1 (skriva och beräkna värdet av uttryck) |
14 |
5.3 Formler |
Övningsblad 5:2 (förenkling) |
16 |
5.5 Introduktion till ekvationer 5.6 Ekvationslösning |
Övningsblad 5:3 (formler) |
17 |
5.7 Problemlösning med ekvationer
|
Övningsblad 5:4 (hitta mönstret) |
18 |
Begreppstest och kapiteltest |
Övningsblad 5:6 (ekvations lösning) |
19 |
Repetition Prov 10/5 |
Repetitionsuppgifter |
Arbetssätt, arbetsformer
· Gemensamma genomgångar
· Enskilt arbete
· Problemlösning i grupp/redovisning
· Gruppdiskussioner
Bedömning av kunskaper/förmågor genom
· Lektionsaktivitet
· Redovisningar
· Inlämningsuppgifter
· prov/test
Utvärdering och dokumentation
· Utvärderingen sker skriftligt och/eller muntligt
· Dokumentation sker via matriser
Syfte (5)
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
använda och analysera matematiska begrepp och samband mellan begrepp,
välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
föra och följa matematiska resonemang, och
använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Centralt innehåll (6)
Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer.
Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven.
Metoder för ekvationslösning.
Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas generellt.
Kriterier (24)
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Innehåller inga matriser
Innehåller inga uppgifter