👋🏼 Var med och förbättra Skolbanken med oss på Unikum. Svara på formuläret här

Skolbanken – inspiration och utveckling från hela landet

Matris Matematik 8

Skapad 2019-08-16 11:26 i Östra grundskolan Huddinge
Matrisen innefattar även F-nivå
Grundskola 7 – 9 Matematik
Du har ännu inte nått E-nivå
E-nivå
C-nivå
A-nivå
Problemlösningsförmåga
Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. Problemlösning innebär att du ska kunna lösa problem på ett så bra sätt som möjligt. Det innebär att du ska själv kunna välja lämplig metod för att lösa problemet.
Du löser enklare problem men du beskriver ännu inte metod och/eller ger inget omdöme om tillvägagångssätt eller resultatents rimlighet. Du behöver hjälp att tolka enkla vardagliga situationer och formulera frågor med matematiska uttrycksformer.
Du löser enkla matematiska problem, beskriver din metod och ger enklare omdöme om tillvägagångssätt och resultatets rimlighet. Du kan tolka enkla vardagliga situationer och formulera frågor med hjälp av matematiska uttrycksformer.
Du kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Du löser sammansatta problem, förklarar val av metod och ger välutvecklade och nyanserade omdömen om tillvägagångssätt och resultatens rimlighet. Du kan tolka olika situationer och formulera frågor på ett välutvecklat sätt med matematiska uttrycksformer.
Begreppsförmåga
Använda och analysera matematiska begrepp och samband mellan begrepp. Du visar att du kan begreppen genom att använda dem och beskriva dem korrekt.
Du är ännu inte säker på användandet av grundläggande matematiska begrepp och hur de ska beskrivas.
Du kan ge enklare beskrivningar av matematiska begrepp. Du använder grundläggande matematiska begrepp med säkerhet i kända vardagliga situationer.
Du har goda kunskaper om begrepp och visar det genom att ge utvecklade beskrivningar och förklaringar. I dina förklaringar växlar du mellan flera olika uttrycksformer.
Du har mycket goda kunskaper om matematiska begrepp och visar det genom att ge välutvecklade beskrivningar och generella förklaringar. I dina förklaringar växlar du mellan flera avancerade uttrycksformer.
Metodförmåga
Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter. Du ska kunna välja och använda lämpliga metoder som passar till uppgiften.
Du är ännu inte säker på vilka grundläggande metoder du bör välja och du visar ännu inte att du kan lösa de uppgifter som krävs
Du väljer och använder grundläggande metoder på ett korrekt och säkert sätt.
Du kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget och lösa rutinuppgifter med gott resultat.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget och lösa komplexa uppgifter med mycket gott resultat.
Resonemangsförmåga
Föra och följa matematiska resonemang. Resonera och motivera innebär att du kan förklara hur du har tänkt, varför du anser att t.ex ett påstående är rätt eller fel.
Du för ännu inte resonemang om vilka strategier, metoder och räknesätt som du valt och/eller om ditt svar är rimligt. Du behöver öva mer på att resonera kring uppgifter. Varför det är rätt/fel osv.
Du för och följer matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Du för och följer matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Du resonerar om val av olika strategier, metoder och räknesätt samt om resultatens rimlighet genom att systematiskt pröva och ompröva dem. Du kan ge välgrundade motiveringar och förklaringar samt generalisera dina val.
Kommunikationsförmåga
Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Redovisning innebär att du tydligt visar hur du har valt att lösa en uppgift. Redovisningarna ska vara strukturerade och tydliga med ett korrekt och lämpligt matematiskt språk.
Du visar ännu osäkerhet inför att föra eller återge matematiska resonemang med hjälp av matematiska begrepp symboler och andra uttrycksätt
När du för matematiska resonemang använder du begrepp, symboler och andra uttryckssätt på enkelt sätt i tal och skrift. Du kan också återge andras resonemang om det har ett enkelt matematiskt innehåll.
Du kan redogöra för ditt tillvägagångssätt. Dvs visa i uträkningar hur du har löst uppgifterna på ett ändamålsenligt sätt och använder då olika matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Du anpassar väl ditt sätt uttrycka dig så att det passar syfte och sammanhang samt använder matematiska begrepp, symboler och uttryckssätt på ett välutvecklat och nyanserat sätt. Du kan återge centrala omfattande delar av innehållet i resonemang med välutvecklat matematiskt innehåll.