Skolbanken – inspiration och utveckling från hela landet

Matematik; Algebra 8C Ht-17

Skapad 2015-05-23 14:35 i Medarbetarsamtal Ylva Engvall Mölndals Stad
Grundskola 7 Matematik

Innehåll

 

                              När du har arbetat dig igenom detta kapitel skall du kunna:                         

                                                           Algebraiska uttrycK                           

                                                           Förenkla uttryck                         

                                                           Formler                           

                                                           Hur man löser ekvationer                          

                                                           Problemlösning med ekvationer.

  

                                 Viktiga begrepp

                     algebra                            likhet

                     numeriska uttryck           ekvation

                    algebraiska uttryck          obekant

                    variabel                            vänster led

                    förenkla uttryck               höger led 

                    formel                              ekvationslösning

                   prövning.

 

Bedömning på området algebra sker med ett skriftligt prov. Se matris nedan.

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma

Matriser

Ma
Algebra HT-17

Utveckla förmågan att...

F-nivå Ännu ej godtagbara kunskaper för årskursen
E-nivå Godtagbara kunskaper för årskursen
C-nivå Godtagbara kunskaper för årskursen
A-nivå Godtagbara kunskaper för årskursen
1 Problemlösning
hur väl eleven använder samband och generaliseringar. Val av strategi/metod för att lösa uppgiften. Hur väl eleven kan lösa en uppgift där lösningsmetoden inte är given i frågeställningen.
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sättgenom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerandesätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Begrepp
i vilken grad eleverna visar kunskaper om matematiska begrepp och samband mellan dessa.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Metod
kvaliteten på metoder eleven använder, hur väl procedurer och beräkningar genomförs.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Resonemang
kvaliteten på elevens slutsatser, analyser och reflektioner och andra former av matematiska resonemang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Kommunikation
Kvaliteten på elevens redovisning och hur väl eleven använder matematiskt språk och uttrycksformer.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andramatematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: