Skolbanken – inspiration och utveckling från hela landet

Mönster och räknemetoder

Skapad 2015-09-15 21:42 i Gläntanskolan Helsingborg
Grundskola 8 Matematik

Mål: - kunna se mönster i olika figurer och tal - förstå hur vårt talsystem är uppbyggt - kunna jämföra och storlekordna tal - se samband mellan de fyra räknesätten - gör beräkningar med räknesätten - avrunda och göra överslag

Innehåll

Bedömning och arbetssätt

Vi växlar mellan diskussioner, gruppuppgifter, genomgångar och enskilt arbete. Vi kommer även att ha diagnoser och läxor.

Genomgångar, övningar och mer detaljerad information kommer att finnas  i Classroom.

Vi avslutar området med ett skriftligt prov.

Kopplingar till läroplan

  • Ma  7-9
    Taluppfattning och tals användning Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
  • Ma  7-9
    Taluppfattning och tals användning Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
  • Ma  7-9
    Taluppfattning och tals användning Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
  • Ma  7-9
    Taluppfattning och tals användning Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
  • Ma  7-9
    Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.

Matriser

Ma
Mönster och räknemetoder

E
C
A
Problemlösning
  • Ma  E 9
  • Ma  E 9
  • Ma  C 9
  • Ma  C 9
  • Ma  A 9
  • Ma  A 9
Du kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Du kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt att formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget. Du för enkla och relativt väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Du kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Du för välutvecklade och väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Begrepp
  • Ma  E 9
  • Ma  E 9
  • Ma  C 9
  • Ma  C 9
  • Ma  C 9
  • Ma  A 9
  • Ma  A 9
  • Ma  A 9
Du har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Du kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Du har goda grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Du kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativit väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Du har mycket goda grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Du kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Metoder
  • Ma  E 9
  • Ma  C 9
  • Ma  A 9
Du kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik med tillfredställande resultat.
Du kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik med gott resultat.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik med mycket gott resultat.
Resonemang
  • Ma  E 9
  • Ma  C 9
  • Ma  A 9
I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Kommunikation
  • Ma  E 9
  • Ma  C 9
  • Ma  A 9
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivit sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: