Skolbanken – inspiration och utveckling från hela landet

Matematik 9B - v2-6 - vt16

Skapad 2016-01-19 13:52 i Streteredsskolan Mölndals Stad
Lektionsplanering i matematik
Grundskola 9 Matematik
Planering i matematik för veckorna 2 -6 (vårtermin 2016).

Innehåll

Lektionsplanering

vecka

Måndag

Tisdag

Onsdag

2

Studiedag

Nationella matteprovet från 2009 :

 

Enskilt arbete

Nationella matteprovet från 2009 :

 

Enskilt arbete

3

Nationella matteprovet från 2009:

 

Gruppdiskussioner / Rättning

 

Matteläraren blev

insnöad …☃️☃️☃️

 

Ingen lektion!

Nationella matteprovet från 2009:

 

Gruppdiskussioner / Rättning

 

Repetition ”Procent”

4

Genomgång

2.5 Proportion

 

Jobba med minst två nivåer av 2.5

(sid. 90 - 92)

Fortsätt jobba med 2.5

 

 

Nationella matteprovet från 2009:

 

Respons / Utvärdering

Genomgång

3.1 Spegling och symmetri

 

Jobba med minst två nivåer av 3.1

(sid. 111 - 113)

5

Förhör på 2.5

 

 

Fortsätt jobba med 3.2

Genomgång

3.2 Likformighet

 

Jobba med minst två nivåer av 3.2

(sid. 115 - 118)

Fortsätt jobba med 3.2

 

 

 

 

6

Fortsätt jobba med 3.2

 

Ev. problemlösning

Film ”Strategier för matte”

Förhör på 3.1 och 3.2

 

Problemlösning

7

SPORTLOV

Kopplingar till läroplan

Kopplingar till läroplan

  • Ma
    Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma
    Syfte använda och analysera matematiska begrepp och samband mellan begrepp,
  • Ma
    Syfte välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • Ma
    Syfte föra och följa matematiska resonemang, och
  • Ma
    Syfte använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
  • Ma  7-9
    Algebra Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer.
  • Ma  7-9
    Algebra Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven.
  • Ma  7-9
    Algebra Metoder för ekvationslösning.
  • Ma  7-9
    Geometri Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
  • Ma  7-9
    Geometri Likformighet och symmetri i planet.
  • Ma  7-9
    Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.

Matriser

Ma
Följande kunskapskrav i matematik kommer att bedömas denna termin (vt-16):

Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder

F
E
C
A
Lösa problem med strategier, metoder & modeller
Eleven kan lösa olika problem i bekanta situationer på ett **i huvudsak** fungerande sätt genom att välja och använda strategier och metoder med **viss** anpassning till problemets karaktär samt **bidra till** att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett **relativt väl** fungerande sätt genom att välja och använda strategier och metoder med **förhållandevis god** anpassning till problemets karaktär samt formulera enkla matematiska modeller som **efter någon bearbetning** kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett **väl** fungerande sätt genom att välja och använda strategier och metoder med **god** anpassning till problemets karaktär samt **formulera** enkla matematiska modeller som kan tillämpas i sammanhanget.
Resonemang om tillvägagångssätt & rimlighet
Eleven för **enkla och till viss del** underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan **bidra till** att ge **något** förslag på alternativt tillvägagångssätt.
Eleven för **utvecklade och relativt väl** underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge **något** förslag på alternativt tillvägagångssätt.
Eleven för **välutvecklade och väl underbyggda** resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge **förslag** på alternativa tillvägagångssätt.

Använda och analysera matematiska begrepp och samband mellan begrepp

F
E
C
A
Använda matematiska begrepp
Eleven har **grundläggande** kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett **i huvudsak** fungerande sätt.
Eleven har **goda** kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett **relativt väl** fungerande sätt.
Eleven har **mycket goda** kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett **väl** fungerande sätt.
Beskriva med matematiska uttrycksformer
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett **i huvudsak** fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett **relativt väl** fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett **väl** fungerande sätt.
Uttrycksformer & begreppens relation
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra **enkla** resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra **utvecklade** resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra **välutvecklade** resonemang kring hur begreppen relaterar till varandra.

Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter

F
E
C
A
Välja och använda matematiska metoder: aritmetik och algebra
Eleven kan välja och använda **i huvudsak fungerande** matematiska metoder med **viss** anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet , statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda **ändamålsenliga** matematiska metoder med **relativt god** anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet , statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda **ändamålsenliga och effektiva** matematiska metoder med **god** anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet , statistik samt samband och förändringmed mycket gott resultat.

Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

F
E
C
A
Redogöra för & samtala om tillvägagångssätt
Eleven kan redogöra för och samtala om tillvägagångssätt på ett **i huvudsak** fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med **viss** anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett **ändamålsenligt** sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med **förhållandevis god** anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett **ändamålsenligt och effektivt sätt** och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med **god** anpassning till syfte och sammanhang.

Föra och följa matematiska resonemang

F
E
C
A
Framföra och bemöta matematiska argument i resonemang
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till **viss del** för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som **för resonemangen framåt**.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som **för resonemangen framåt** och **fördjupar eller breddar dem**.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: