Skolbanken – inspiration och utveckling från hela landet

Matematikplanering 9:an Annas grupp: Geometri

Skapad 2016-02-25 07:52 i Landvetterskolan Härryda
Planering för kapitel 4:3 om Geometri
Grundskola 9 Matematik

Ämne: Matematik

Årskurs: 9

Arbetsområde: Geometri 

Kapitel 4:3 

Datum: v.8-12

Innehåll

Varför ska vi arbeta med det här?

Du ska utveckla din förmåga att:

Kopplingar till läroplan

  • Ma
    Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma
    Syfte använda och analysera matematiska begrepp och samband mellan begrepp,
  • Ma
    Syfte välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • Ma
    Syfte föra och följa matematiska resonemang, och
  • Ma
    Syfte använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

Det här kommer du att få undervisning om

Kopplingar till läroplan

  • Ma  7-9
    Taluppfattning och tals användning Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
  • Ma  7-9
    Geometri Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
  • Ma  7-9
    Geometri Avbildning och konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala vid förminskning och förstoring av två- och tredimensionella objekt.
  • Ma  7-9
    Geometri Likformighet och symmetri i planet.
  • Ma  7-9
    Geometri Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
  • Ma  7-9
    Geometri Geometriska satser och formler och behovet av argumentation för deras giltighet.
  • Ma  7-9
    Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
  • Ma  7-9
    Problemlösning Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
  • Ma  7-9
    Problemlösning Enkla matematiska modeller och hur de kan användas i olika situationer.

Det här ska du lära dig.

  • Vinklar och månghörningar
  • Omkrets och enheter
  • Area och volym
  • Symmetri
  • Likformiga figurer
  • Skala
  • Pythagoras sats

Här hittar du ett dokument med vad du ska kunna i varje område.

Så här kommer vi att arbeta.

  • Genomgångar i grupp och individuellt
  • Enskilt och parvis arbete i matteboken Prio 9, kapitel 4:1
  • Läxor och läxförhör enligt detaljplanering

Klicka här för att se detaljplanering

 

 

Extrauppgifter

Här finns extrauppgifter: Bevis med vinklar, Area, Problemlösning Geometri

Här finns facit till Problemlösningsuppgifterna i Geometri (facit till övriga uppg. finns i respektive länk)

Här finns extrauppgifter: Kvadratrötter och Pythagoras sats

Matriser

Ma
Dessa kunskaper kommer att bedömas

E
C
A
Problemlösning
Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma
  • Ma
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. .
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt
Begreppskunskap
Använda och analysera matematiska begrepp och samband mellan begrepp,
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Metoder
Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Resonemang
Föra och följa matematiska resonemang, och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: