Skolbanken – inspiration och utveckling från hela landet

Matematik år 8 Kap 5 Bråk och Procent VT 2016

Skapad 2016-03-20 12:26 i Norrbergsskolan Vaxholm Stad
Bråk och Procent
Grundskola 7 – 9 Matematik
...

Innehåll

Syfte

Kopplingar till läroplan

  • Ma
    Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma
    Syfte använda och analysera matematiska begrepp och samband mellan begrepp,
  • Ma
    Syfte välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • Ma
    Syfte föra och följa matematiska resonemang, och
  • Ma
    Syfte använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

Centralt innehåll

Kopplingar till läroplan

  • Ma  7-9
    Taluppfattning och tals användning Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
  • Ma  7-9
    Taluppfattning och tals användning Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
  • Ma  7-9
    Taluppfattning och tals användning Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
  • Ma  7-9
    Samband och förändring Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
  • Ma  7-9
    Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
  • Ma  7-9
    Problemlösning Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
  • Ma  7-9
    Problemlösning Enkla matematiska modeller och hur de kan användas i olika situationer.

Undervisning/Tidsram

När du har arbetat med det här kapitlet ska du kunna:

  • jämföra storleken på olika bråk
  • förkorta och förlänga bråk
  • räkna ut procentsatsen
  • förstå och använda procent vid jämförelser
  • addera, subtrahera och multiplicera bråk

 

V 14

 

 

 

Introduktion

Bråk

Olika bråk men lika stor del

Procent betyder hundradelar

V 15

 

Jämför och använd procent

Procentuell förändring

Mer än 100%

V 16

 

multiplicera bråk/Diagnos 

V 17

 

förändringsfaktor

V 16

 

fördjupning/förstärkning

V 17

 

fördjupning/förstärkning

V 18

 Prov 

 

 

V 19

 

 

Matteord bråk och procent

Bråk
Täljare
Nämnare
Förkorta
Förlänga

Generellt 
Har du glömt hur man gör räkneuppställningar eller huvudräkning rekommenderar vi avsnittet "Verktygslådan" i slutet av boken.

Tänk på att redovisa dina uppgifter ordentligt när du övningsräknar. Gör alltid ordentliga redovisningar och skriv alltid fullständiga svar, det har du igen på proven.

Det är viktigare att du förstår matematiken än att du räknar så många uppgifter på så kort tid som möjligt utan att tänka efter och reflektera över betydelsen.

Det är DITT ansvar att se till att vara i fas med planeringen om du varit sjuk, ledig eller av annan anledning inte följt planeringen. Det är viktigt att DU frågar om du undrar över någonting. Om du inte får hjälp direkt så hoppa över och räkna vidare eller fråga en kompis.

Ta vara på lektionstiden. Ju mer du får gjort på lektionen desto mindre behöver du jobba hemma.

Glöm inte bort att matematik är ett språk som måste övas och pluggas in regelbundet!

Lycka till med mattestudierna! /Matematiklärarna

Bedömning

Vi fokuserar i matematiken på fem förmågor. Dessa är:

  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • använda och analysera matematiska begrepp och samband mellan begrepp,
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • föra och följa matematiska resonemang, och
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. (Kommunikation)

Kopplingar till läroplan

  • Ma
    Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma
    Syfte använda och analysera matematiska begrepp och samband mellan begrepp,
  • Ma
    Syfte välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • Ma
    Syfte föra och följa matematiska resonemang, och
  • Ma
    Syfte använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

Matriser

Ma
Bedömning bråk och procent

F
E
C
A
Problemlösning
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. t.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tilllämpas i sammanhanget. tillvägagångssätt.
Eleven kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Matematiska metoder
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Resonemang
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller
Komunikation
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och samman hang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang. breddar dem.

F
E
C
A
Helhetsbedömning
Sammanfattning av de förmågor du påvisat under lektioner, laborationer samt examinationer.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: