Skolbanken – inspiration och utveckling från hela landet

Ma: Procent och decimaltal kap 5 vt-16

Skapad 2016-04-12 12:52 i Gammal Trelleborg
Årskurs 7 ma kap 5
Grundskola 7 Matematik

Beskriv arbetsområdet för eleven här. Ingressen kan rama in arbetsområdet och/eller väcka elevens nyfikenhet.

Innehåll

Syfte

Kopplingar till läroplan

  • Gr lgr11
    Skolan ska ansvara för att varje elev efter genomgången grundskola kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet,
  • Gr lgr11
    Skolan ska ansvara för att varje elev efter genomgången grundskola kan lösa problem och omsätta idéer i handling på ett kreativt och ansvarsfullt sätt,
  • Gr lgr11
    Skolan ska ansvara för att varje elev efter genomgången grundskola kan lära, utforska och arbeta både självständigt och tillsammans med andra och känna tillit till sin egen förmåga,
  • Ma  7-9
    Taluppfattning och tals användning Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
  • Ma  7-9
    Taluppfattning och tals användning Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
  • Ma  7-9
    Sannolikhet och statistik Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer.
  • Ma  7-9
    Sannolikhet och statistik Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem.
  • Ma  7-9
    Samband och förändring Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
  • Ma  7-9
    Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
  • Ma  7-9
    Problemlösning Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
  • Ma  7-9
    Problemlösning Enkla matematiska modeller och hur de kan användas i olika situationer.

Detta ska vi arbeta med

Se samband mellan bråk, decimaltal och procent

Beräkna delen av det hela i procent

Beräkna delen när procenttalet är känt

Beräkna nya värden efter procentuella förändringar

och räkna med mer än 100%.

Detta kommer att bedömas

Varje lektionstillfälle kommer att bedömas, samt grupparbete och prov.

Se matris.

Matriser

Ma
Matematik åk 7-9

Problemlösning

F
E
C
A
Din förmåga att lösa problem genom att välja strategier och metoder och formulera matematiska modeller.
Du löser problem på ett i huvudsak fungerande sätt genom att välja metod/ strategi med viss anpassning till problemets karaktär. Du bidrar till att formulera modeller.
Du löser problem på ett relativt väl fungerande sätt genom att välja metod/ strategi med förhållandevis god anpassning till problemets karaktär. Du formulerar modeller som efter någon bearbetning fungerar.
Du löser problem på ett väl fungerande sätt genom att välja metod/ strategi med god anpassning till problemets karaktär. Du formulerar modeller som fungerar.
Din förmåga att föra resonemang om tillvägagångssätt och rimlighet i svaret.
Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet.
Du för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet.
Du för välutvecklade och väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet.
Din förmåga att se mer än en lösning på ett problem.
Du kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Du kan ge något förslag på alternativt tillvägagångssätt.
Du kan ge förslag på alternativa tillvägagångssätt.

Matematiska begrepp.

F
E
C
A
Din förståelse för olika matematiska begrepp och din förmåga att tillämpa dessa i olika sammanhang.
Du har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Du har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Du har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Din förmåga att beskriva begrepp med hjälp av matematiska uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Din förmåga att föra resonemang om hur olika matematiska begrepp relaterar till varandra.
Du kan föra enkla resonemang kring hur begreppen relaterar till varandra.
Du kan föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Du kan föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

Metodanvändning

F
E
C
A
Din förmåga att använda olika matematiska metoder.
Du kan välja och använda i huvudsak fungerande matematiska metoder.
Du kan välja och använda ändamålsenliga matematiska metoder.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder.
Din förmåga att anpassa metod efter aktuellt problem.
Du väljer metod med viss anpassning till sammanhanget.
Du väljer metod med relativt god anpassning till sammanhanget.
Du väljer metod med god anpassning till sammanhanget.

Matematiska färdigheter inom olika områden

F
E
C
A
Din förmåga att göra beräkningar och lösa uppgifter inom: Algebra Sannolikhet Samband och förändring
Du kan göra beräkningar och lösa uppgifter med tillfredsställande resultat.
Du kan göra beräkningar och lösa uppgifter med gott resultat.
Du kan göra beräkningar och lösa uppgifter med mycket gott resultat.

Kommunikation

F
E
C
A
Din förmåga att redogöra och samtala om tillvägagångssätt.
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Din förmåga att anpassa dig efter syfte och sammanhang.
Du redogör med viss anpassning till syfte och sammanhang.
Du redogör med förhållandevis god anpassning till syfte och sammanhang.
Du redogör med god anpassning till syfte och sammanhang.
Din förmåga att framföra och bemöta matematiska argument.
Du framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: