Skolbanken – inspiration och utveckling från hela landet

Matematik 2016-2017

Skapad 2016-08-16 12:21 i Herrestadsskolan Uddevalla
Grundskola 6 Matematik
Vi utvecklar förmågorna problemlösning, begrepp, metod, kommunikation och resonemang.

Innehåll

  • Vi arbetar med läromedlet Koll på matematik. De fyra räknesätten, skala, volym, cirkeln, bråk, procent, proportionalitet, sannolikhet, kombinatorik, statistik, ekvationer, uttryck och problemlösning. Vi avslutar varje delområde med ett prov.

Kopplingar till läroplanen

  • Centralt innehåll
  • Rationella tal och deras egenskaper.
    Ma  4-6
  • Positionssystemet för tal i decimalform.
    Ma  4-6
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
    Ma  4-6
  • Tal i procentform och deras samband med tal i bråk- och decimalform.
    Ma  4-6
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Obekanta tal och deras egenskaper samt situationer där det finns behov av att beteckna ett obekant tal med en symbol.
    Ma  4-6
  • Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven.
    Ma  4-6
  • Metoder för enkel ekvationslösning.
    Ma  4-6
  • Sannolikhet, chans och risk grundat på observationer, simuleringar eller statistiskt material från vardagliga situationer. Jämförelser av sannolikheten vid olika slumpmässiga försök.
    Ma  4-6
  • Enkel kombinatorik i konkreta situationer.
    Ma  4-6
  • Tabeller och diagram för att beskriva resultat från undersökningar, såväl med som utan digitala verktyg. Tolkning av data i tabeller och diagram.
    Ma  4-6
  • Proportionalitet och procent samt deras samband.
    Ma  4-6
  • Grafer för att uttrycka olika typer av proportionella samband vid enkla undersökningar.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
Matematik år 4-6

Problemlösning

Genom undervisningen i ämnet matematik ska eleverna ges förutsättningar att utveckla sin förmåga att:
  • Ma   formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Lösa problem
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Beskriva tillvägagångssätt
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt.
Eleven beskriver tillvägagångssätt på ett väl fungerande sätt.
Resonera kring rimlighet
Eleven för enkla och till viss del underbyggda resonemang om resultatets rimlighet i förhållande till problemsituationen.
Eleven för utvecklade och relativt väl underbyggda resonemang om resultatets rimlighet i förhållande till problemsituationen.
Eleven för välutvecklade och väl underbyggda resonemang om resultatets rimlighet i förhållande till problemsituationen.
Hitta alternativa tillvägagångssätt
Eleven kan bidra till att ge något förslag på ett alternativt tillvägagångssätt.
Eleven kan ge något förslag på ett alternativt tillvägagångssätt.
Eleven kan ge förslag på alternativa tillvägagångssätt.

Begrepp och uttrycksformer (matematiskt språk)

Genom undervisningen i ämnet matematik ska eleverna ges förutsättningar att utveckla sin förmåga att:
  • Ma   använda och analysera matematiska begrepp och samband mellan begrepp,
Känna till matematiska begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använde dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använde dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använde dem i nya sammanhang på ett väl fungerande sätt.
Beskriva matematiska begrepp
Eleven kan även beskriva begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Växla mellan uttrycksformer
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

Matematiska metoder

Genom undervisningen i ämnet matematik ska eleverna ges förutsättningar att utveckla sin förmåga att:
  • Ma   välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
Aritmetik
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik med mycket gott resultat.
Algebra
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom algebra med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom algebra med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom algebra med mycket gott resultat.
Geometri
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom geometri med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom geometri med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom geometri med mycket gott resultat.
Sannolikhet
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom sannolikhet med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom sannolikhet med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom sannolikhet med mycket gott resultat.
Statistik
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom statistik med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom statistik med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom statistik med mycket gott resultat.
Samband och förändring
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom samband och förändring med mycket gott resultat.

Redovisning av kunskap

Genom undervisningen i ämnet matematik ska eleverna ges förutsättningar att utveckla sin förmåga att:
  • Ma   föra och följa matematiska resonemang, och
  • Ma   använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Redovisa med hjälp av matematiska uttrycksformer
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Matematiska resonemang
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: