Skolbanken – inspiration och utveckling från hela landet

Matteborgen 4A - kapitel 2

Skapad 2016-10-05 09:22 i Ättekullaskolan Helsingborg
Med utgångspunkt från "Matte Direkt Borgen"
Grundskola 4 Matematik
Beskriv arbetsområdet för eleven här. Ingressen kan rama in arbetsområdet och/eller väcka elevens nyfikenhet.

Innehåll

"Addition och subtraktion"

Vi kommer att arbeta med kapitel 2 "Matte Direkt Borgen 4A." Vi kommer att bearbeta området "'Addition och subtraktion". Vi kommer även att arbeta med annat utdelat material som hör till områdena. Framför allt  med problemlösning och praktisk matematik.

Målet med undervisningen är att utveckla förmågan att...

Addition och subtraktion

  • förstå hur addition och subtraktion hör ihop
  • veta hur likhetstecknet används
  • kunna addera och subtrahera inom talområdet 0 - 10 000
  • kunna använda addition och subtraktion när du löser textuppgifter och vid problemlösning

Undervisningens innehåll

Arbetsgång

Under perioden kommer vi att

  • ha genomgångar gemensamt och individuellt
  • ha skriftliga och muntliga redovisningar
  • ha diskussioner i stora och små grupper
  • ha självständig räkning i klass och hemma
  • ha läxa varje vecka
  • ha diagnoser efter avslutat kapitel
  • arbeta med fördjupningsavsnitt eller ytterligare träning på grunderna
  • avsluta med ett skriftligt prov

Bedömning

Bedömningen kommer att ske i bedömningsmatris (se bifogad)

Dessa förmågor kommer att bedömmas:

  • dina val av lämpliga metoder vid problemlösning
  • dina beräkningar i de fyra räknesätten
  • din förmåga att följa, förstå och pröva matematiska resonemang
  • dina skriftliga och muntliga redovisningar som visar dina tankegångar
  • din förmåga att muntligt följa och delta i diskussioner, under grupparbete och genomgångar

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Rationella tal och deras egenskaper.
    Ma  4-6
  • Positionssystemet för tal i decimalform.
    Ma  4-6
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
    Ma  4-6
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
MATEMATIK kunskapskrav åk 6 2014

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att...

I tabellen nedan hittar du kunskapskraven för betyg E - C- A i slutet av årskurs 6.
  • Ma   formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma   använda och analysera matematiska begrepp och samband mellan begrepp,
  • Ma   välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • Ma   föra och följa matematiska resonemang, och
  • Ma   använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett väl fungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: