Skolbanken – inspiration och utveckling från hela landet

Matteborgen 6B

Skapad 2017-02-14 21:05 i Blötbergets skola Ludvika
Matematikundervisning utifrån Matteborgen 6b
Grundskola 6 Matematik
Du kommer få lära dig mer om tal, enheter, skala, procent och även lite algebra.

Innehåll

Syfte och mål

Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden. Undervisningen ska bidra till att eleverna utvecklar intresse för matematik och tilltro till sin förmåga att använda matematik i olika sammanhang.

 

Innehåll och arbetsformer

Vi ska arbeta med följande områden inom matematiken:

Mera tal:
l
äsa och skriva stora tal
ställa upp och multiplicera heltal t ex 32 x 56
ställa upp och multiplicera decimaltal t ex 4,8 x 5,4
multiplicera decimaltal med 10 och 100
dividera decimaltal med 10 och 100
dividera när det blir decimaltal i svaret

Enheter och skala:
kunna räkna med tid
förstå vad som menas med hastighet och kunna göra enkla beräkningar med hastighet
förstå vad som menas med skala och kunna räkna med skala
kunna använda enheter för vikt och volym

Procent:
skriva 50%, 25%, 10% och 1% som bråk
räkna ut hur mycket 50%, 25%, 10% och 1% är med huvudräkning
räkna ut hur mycket en viss procent av något är, tex 12 % av 150 kr.

Algebra:
räkna med likheter
lösa enkla ekvationer
tolka och skriva uttryck med variabler

Problemlösning:
Använda olika metoder vid problemlösning, som att läsa ur text,
leta mönster i tal och bild,
rita en bild,
pröva dig fram,
arbeta baklänges


Detta tränar vi på olika sätt, t.ex  genom att:
* samtala om matematik i större och mindre grupper,
* räkna uppgifter ur matteboken,
* arbeta praktiskt med undersökningar, aktiviteter, spel och bilder
* lösa olika typer av uppgifter själva, i par och i grupper
* använda oss av datorer och miniräknare i olika sammanhang

 

Bedömning och dokumentation

Du kommer att bedömas i hur väl du kan:

  • lösa matematiska problem med hjälp av olika matematiska strategier och metoder. Detta visar du genom att använda dig av en hållbar strategi och metod när du räknar ut ett matematiskt problem.
  • använda matematiska begrepp och samband mellan begrepp. Detta visar du genom att ex. förstå vad som menas med att räkna ut produkten av faktorerna 5 och 9, vad som menas med överslagsräkning el. avrundning.
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter. Detta visar du genom att räkna med relevant metod för given uppgift. Ex: räknar du med addition el. multiplikation, beräknar du area genom att räkna antalet rutor el. använder du dig av en matematisk beräkning?
  • föra och följa matematiska resonemang. Detta visar du genom att ha strategier för att kunna lösa flerstegsuppgifter i problemlösning, genom att aktivt delta i diskussioner samt muntligt redovisa uppgifter i problemlösning.
  • använda dig utav matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Detta visar du genom att förklara hur du kommer fram till en lösning genom tydliga uppställningar och svar i läsuppgifter.


Din kunskap bedöms regelbundet genom:

  • muntliga förklaringar till uppgifter
  • skriftliga beräkningar i matteboken
  • deltagande i matematiska diskussioner och samtal
  • beräkningar och förklaringar i praktisk matte/utematte
  • resultat på diagnoser och prov

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Positionssystemet för tal i decimalform.
    Ma  4-6
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
    Ma  4-6
  • Tal i procentform och deras samband med tal i bråk- och decimalform.
    Ma  4-6
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Obekanta tal och deras egenskaper samt situationer där det finns behov av att beteckna ett obekant tal med en symbol.
    Ma  4-6
  • Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven.
    Ma  4-6
  • Metoder för enkel ekvationslösning.
    Ma  4-6
  • Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas.
    Ma  4-6
  • Tabeller och diagram för att beskriva resultat från undersökningar, såväl med som utan digitala verktyg. Tolkning av data i tabeller och diagram.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
Kunskapskrav matematik

Dessa förmågor har du visat:

E
C
A
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: