Skolbanken – inspiration och utveckling från hela landet

Ma 7 Bråk och decimaltal

Skapad 2017-03-02 15:51 i Liljeborgsskolan 4-9 Trelleborg
Pedagogisk planering för arbete med kapitel 4 i lärobok Formula 7. Planeringen innehåller även en bedömningsmatris.
Grundskola 7 Matematik
Kapitel 4 Bråk och decimaltal

Innehåll

Syfte

Centralt innehåll

Konkretiserade mål

När du har arbetat med detta kapitel ska du kunna

  • jämföra storleken av bråk
  • växla mellan bråkform, blandad form och decimalform
  • förlänga och förkorta bråk
  • beräkna hur mycket bråkdelen av något är
  • addera och subtrahera bråk
  • problemlösa med bråk och decimaltal

Undervisningen

Vi kommer att arbeta med gemensamma genomgångar, enskilt arbete, gruppaktiviteter och klassdiskussioner

Bedömning

Vi kommer att bedöma dina förmågor enligt matrisen nedan. Detta kommer att göras dels under lektionstid men också vid provtillfällen.

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Matematikmatris

Nivå 1
Nivå 2
Nivå 3
Problemlösning
Du kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt
Du kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt
Du kan lösa olika problem i bekanta situationer på ett väl fungerande sätt.
Begrepp
Du har grundläggande kunskaper om matematiska begrepp. Du visar det genom att använda dem i välkända sammanhang. Du använder dem på ett i huvudsak fungerande sätt.
Du har goda kunskaper om matematiska begrepp. Du visar det genom att använda dem i bekanta sammanhang. Du använder dem på ett relativt väl fungerande sätt.
Du har mycket goda kunskaper om matematiska begrepp. Du visar det genom att använda dem i nya sammanhang. Du använder dem på ett väl fungerande sätt.
Metod
Du kan göra beräkningar och lösa rutinuppgifter inom aritmetik med tillfredsställande resultat. Du kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget.
Du kan göra beräkningar och lösa rutinuppgifter inom aritmetik med gott resultat. Du kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget.
Du kan göra beräkningar och lösa rutinuppgifter inom aritmetik med mycket gott resultat. Du kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget.
Resonemang
I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt
I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer du matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Kommunikation
Du använder symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Du använder symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Du använder symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: