Skolbanken – inspiration och utveckling från hela landet

Tiotalsövergångar uppställning

Skapad 2017-04-04 09:09 i Nyvångskolan F-3 (nedlagd) Lunds för- och grundskolor
Grundskola 2 – 3 Matematik
Du har nu haft en kort paus från arbetet med tiotalsövergångar. Vi kommer nu arbeta vidare med tiotalsöverångar. Denna gång kommer du få lära dig en ny strategi: Uppställning. Det är viktigt att känna efter vilken strategi som passar en själv när man räknar för att underlätta så mycket som möjligt för sig själv. Kom ihåg att matematik handlar om att förenkla för sig själv.

Innehåll

Vad ska vi lära oss? (Kunskaper)

  • Matematik
  • Strategier vid huvudräkning.
  • Tiotalsövergångar inom talområdet 0-100.
  • Uträkningar inom talområdet 0-200.
  • Uppställningar
  • Du kommer få räkna, skriva och rita.

Hur ska vi lära oss detta?

  • Du kommer få arbeta genom EPA (enskilt, par, alla), i grupp, parvis eller helklass.
  • Du kommer få laborera med en ny strategi: uppställningar både muntligt och skriftligt.
  • Detta kommer du få lära dig genom att vara nyfiken, villig att lära dig något nytt, vara frågvis, undersökande och genom att lyssna på andra.

Bedömning

  • Du kommer bedömas efter din förmåga att välja och använda olika strategier som fungerar till uppgiften du räknar.
  • Detta görs genom observationer och utförande i dina arbetshäften.

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll

  • Ma  1-3
  • Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  1-3
  • Rimlighetsbedömning i vardagliga situationer
    Ma  1-3
  • Matematiska likheter och likhetstecknets betydelse.
    Ma  1-3
  • Strategier för matematisk problemlösning i enkla situationer.
    Ma  1-3
  • Matematisk formulering av frågeställningar utifrån enkla vardagliga situationer.
    Ma  1-3
  • Kunskapskrav
  • Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med viss anpassning till problemets karaktär.
    Ma   3
  • Eleven beskriver tillvägagångssätt och ger enkla omdömen om resultatens rimlighet.
    Ma   3
  • Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i vanligt förekommande sammanhang på ett i huvudsak fungerande sätt.
    Ma   3
  • Eleven kan även använda och ge exempel på enkla proportionella samband i elevnära situationera.
    Ma   3
  • Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar med naturliga tal och lösa enkla rutinuppgifter med tillfredställande resultat.
    Ma   3
  • Eleven kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0-20, samt för beräkningar av enkla tal i ett utvidgat talområde.
    Ma   3
  • Vid addition och subtraktion kan eleven välja och använda skriftliga räknemetoder med tillfredställande resultat när talen och svaren ligger inom heltalsområdet 0-200.
    Ma   3
  • Eleven kan beskriva och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då konkret material, bilder, symboler och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
    Ma   3
  • Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet, slumpmässiga händelser, geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet.
    Ma   3
  • Eleven kan hantera enkla matematiska likheter och använder då likhetstecknet på ett fungerande sätt.
    Ma   3

Matriser

Ma
MATEMATIK år 1-3, Nyvångskolan

Taluppfattning och tals användning

Du har förmågan att:
Kunskapskrav år 3
Kunskapskrav E år 6
Naturliga tal
Förstå och använda talen 0-10 för att ange antal och ordning
Förstå och använda talen 0-100 för att ange antal och ordning
Förstå och använda talen 0-1000 för att ange antal och ordning
Förstå och använda talen 0-10 000 för att ange antal och ordning
Förstå och förklara hur man kan dela upp hela tal på olika sätt.(Rationella tal)
Positionssystemet
Förstå och beskriva tiobassystemet med tvåsiffriga tal.
Förstå och beskriva tiobassystemet med tresiffriga tal
Förstå och beskriva tiobassystemet med fyrsiffriga tal
Förstå och beskriva tiobassystemet med femsiffriga tal
Förstå och beskriva decimaltal.
Bråk
Förstå vad symbolen 1/2 betyder.
Förstå delar av en helhet och tolka enkla bråk, t.ex 1/3 och 1/4.
Åskådliggöra delar av en hel, t.ex. 2/3 av 12.
Kunna utföra beräkningar med tal i bråkform.
Addition och subtraktion
Addera och subtrahera inom talområdet 0-10. Både med huvudräkning och skriftliga metoder.
Addera och subtrahera inom talområdet 0-20. Både med huvudräkning och skriftliga metoder.
Se sambanden mellan addition och subtraktion
Välja och använda skriftliga räknemetoder i addition och subtraktion när talen och svaren ligger inom talområdet 0-200.
Välja och använda skriftliga räknemetoder i addition och subtraktion när talen och svaren ligger inom ett utvidgat talområde.
Välja och använda skriftliga räknemetoder i addition och subtraktionnär talen och svaren ligger inom ett utvidgat talområde. Beräkna enkla tal i decimalform.
Multiplikation och division
Multiplicera och dividera tabellerna 1, 2, 5 och 10
Multiplicera och dividera tabellerna 3, 4, 6 och 9
Multiplicera och dividera tabellerna 7 och 8
Se samband mellan multiplikation och division
Välja och använda skriftliga räknemetoder i multiplikation och division när talen och svaren ligger inom ett utvidgat talområde.
Välja och använda skriftliga räknemetoder i multiplikation och division när talen och svaren ligger inom ett utvidgat talområde. Beräkna enkla tal i decimalform.

Algebra

Du har förmågan att:
Kunskapskrav år 3
Kunskapskrav E år 6
Likhetstecknets betydelse
Förstå enkla ekvationer med addition t.ex 4+X=6
Förstå enkla ekvationer med subtraktion t.ex.10-X=3
Förstå ekvationer oavsett var det obekanta talet står. t.ex 7+3=X+6
Använda likhetstecknet på ett fungerande sätt.
Förstå olika metoder för att lösa ut obekanta tal i en ekvation.
Använda sig av ekvationer vid uträkning i vardagliga situationer. Kunna metoder för enkla ekvationslösningar.
Mönster
Tolka och skapa enkla mönster med symboler.
Tolka och skapa enkla talmönster t.ex. 3, 6, 9, ...
Tolka och skapa svårare talmönster t.ex. 1,2,4,7,11 ...
Kunna se enkla mönster i matematiken och utifrån detta kunna utföra svårare uträkningar t.ex. 2x3=6, då är 2x30=60
Kunna se mönster i matematiken och utifrån detta kunna utföra svårare uträkningar t.ex. 2x3=6, då är 4x3=12, vad är då 8x3?
Kunna välja och använda sig av förvärvade kunskaper (mönster) för att göra beräkningar i ett utökat talområde.

Geometri

Du har förmågan att:
Kunskapskrav år 3
Kunskapskrav E år 6
Geometriska former
Kunna namnge de tvådimensionella geometriska formerna; cirkel, kvadrat, rektangel och triangel.
Kunna beskriva likheter och skillnader när det gäller de tvådimensionella geometriska formerna.
Kunna namnge de tredimensionella geometriska formerna; klot, kon, cylinder, kub, rätblock och pyramid.
Kunna beskriva likheter och skillnader när det gäller de tredimensionella geometriska formerna
Konstruera geometriska objekt och kan skilja på olika vinklar (rät, spetsig, trubbig)
Kunna utföra enkla beräkningar och lösa enkla rutinuppgifter när det gäller de geometriska formerna.
Skala
Kunna förstora och förminska i rutsystem.
Kunna förstora 2:1 och förminska 1: 2
Kunna använda sig av skala i vardagliga situationer.
Lägesord
Förstå lägesord som t.ex. först, mitten och sist
Förstå lägesord som t.ex. under, på, ovanför, bredvid, bakom och framför.
Förstå lägesord höger/vänster
Använda vanliga lägesord för att beskriva föremåls läge i rummet.
Symmetri
Ge exempel på en symmetrisk bild eller form.
Ge flera exempel på symmetri i bilder och i naturen.
Ge flera exempel på symmetri i bilder och i naturen samt konstruera symmetriska bilder och hur dessa kan delas symmetriskt (symmetrilinje)
Matematiska storheter TID/ analog klocka
Avläsa klockans hel- och halvtimmar tid.
Avläsa kvart över och kvart i.
Avläsa hela klockan;
Avläsa analog tid samt utföra enkla tidsberäkningar.
Kunna avläsa och använda beräkning av tid i enkla vardagliga situationer.
Matematiska storheter TID/ digital klocka
Avläsa klockans hel- och halvtimmar tid.
Avläsa kvart över och kvart i.
Avläsa hela klockan;
Avläsa digital tid samt utföra enkla tidsberäkningar.
Kunna avläsa och använda beräkning av tid i enkla vardagliga situationer.
Matematiska storheter LÄNGD
Göra enkla jämförelser av längd samt kunna använda och förklara begreppen; kort, lång, bred, hög, låg,smal, tjock och tunn
Göra mätningar med mm, cm, dm och m.
Uppskatta hur lång en km och en mil är.
Göra mätningar och uppskattningar av längd samt bedöma rimligheten i svaret. Kunna förklara begreppen omkrets och area /yta.
Göra omvandlingar mellan enheterna.
Kunna göra enkla beräkningar med area och omkrets.
Matematiska storheter MASSA
Göra enkla jämförelse av massa samt kunna använda och förklara begreppen;lätt, tung, stor, liten, tjock, smal, tunn och bred.
Göra mätningar med kg, hg och g.
Göra mätningar och uppskattningar av massa samt bedöma rimligheten i svaret.
Göra omvandlingar mellan enheterna.
Matematiska storheter VOLYM
Göra enkla jämförelser av volym samt att kunna använda och förklara begreppen mycket, lite, mer, mindre och rymmer.
Göra mätningar med ml, cl, dl och liter.
Göra mätningar och uppskattningar av volym samt bedöma rimligheten i svaret.
Göra omvandlingar mellan enheterna.
Göra enkla beräkningar av kuber och rätblock.

Sannolikhet och statistik

Du har förmågan att:
Kunskapskrav år 3
Kunskapskrav E år 6
Statistik
Göra och förstå enkla frekvenstabeller och stapeldiagram.
Göra och förstå enkla cirkeldiagram.
Göra och förstå enkla linjediagram.
Välja ett fungerande diagram till din uppgift.
Förstå och använda fördjupade diagram.
Använda lägesmåtten medelvärdetypvärde samt median i statistiska undersökningar.
Sannolikhet
Förstå enkel sannolikhet t ex hur stor är chansen att du slår en sexa på tärningen.
Göra undersökningar och observationer av sannolikhet för att förutse chans och risk.

Samband och förändringar

Du har förmågan att:
Kunskapskrav år 3
Kunskapskrav E år 6
Förstå och använda symbolerna < mindre än och > störrre än
Förstå begreppen hälften och dubbelt.

Problemlösning

Du har förmågan att:
Kunskapskrav år 3
Kunskapskrav E år 6
Problemlösning
Förstå och lösa problem med laborativt material med stöd av vuxen.
Med stöd av vuxen välja lämpliga strategier utifrån problemet. Använda laborativt material vid behov.
Lösa enkla problem genom att välja lämplig strategi utifrån problemet.
Lösa enkla problem genom att välja lämplig strategi utifrån problemet. Samt att bedöma svarets rimlighet.
Formulering av frågeställning. Räknehändelser.
Formulera egna räknehändelser utifrån en färdig beräkning i addition och subtraktion. Ex 11-4=7
Formulera egna räknehändelser utifrån en färdig beräkning i multiplikation och division.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: