Skolbanken – inspiration och utveckling från hela landet

Area och omkrets kap 1

Skapad 2017-04-25 10:24 i Malmabergsgruppen Västerås Stad
Kapitel 1 Prima formula
Grundskola 6 Matematik
Överallt finns det figurer av olika slag. Den matematik som handlar om figurerna, deras egenskaper, uppbyggnad och utseende kallas GEOMETRI. Det är just detta som det första kapitlet handlar om. Vi kommer att få lära oss mycket om figurers symmetrilinjer, omkrets och areor, deras vinklar och vad olika figurer kallas.

Innehåll

1. Syfte

Syftet är att använda kunskaper och färdigheter inom geometriområdet för att resonera, diskutera och analysera lösningsförslag på olika problem, samt att reflektera över svarens rimlighet.

2. Detta ska vi arbeta med:

Du kommer att arbeta både individuellt och tillsammans med andra. Vi kommer att arbeta praktiskt, men också teoretiskt. Vi använder matteboken, men också annat material. Tänk på att du genom att vara aktiv på lektionerna får väldigt många chanser att visa att du kan och hur du tänker - ta dem!
Vi kommer att ha några läxor och kapitlet avslutas med ett skriftligt prov.

3.Detta bedöms: Provtillfälle samt redovisningstillfällen och diskussionstillfällen. 

Tänk på att du har möjlighet att visa förmågor vid varje lektionstillfälle!

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
    Ma  4-6
  • Konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala och dess användning i vardagliga situationer.
    Ma  4-6
  • Symmetri i vardagen, i konsten och i naturen samt hur symmetri kan konstrueras.
    Ma  4-6
  • Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas.
    Ma  4-6
  • Jämförelse, uppskattning och mätning av längd, area, volym, massa, tid och vinkel med vanliga måttenheter. Mätningar med användning av nutida och äldre metoder.
    Ma  4-6

Matriser

Ma
Matematik åk 6

Problemlösning

F
E
C
A
Din förmåga att lösa problem genom att välja och använda strategier och metoder anpassade till problemets karaktär.
Du löser problem på ett i huvudsak fungerande sätt genom att välja metod/ strategi med viss anpassning till problemets karaktär.
Du löser problem på ett relativt väl fungerande sätt genom att välja metod/ strategi med förhållandevis god anpassning till problemets karaktär
Du löser problem på ett relativt väl fungerande sätt genom att välja metod/ strategi med förhållandevis god anpassning till problemets karaktär
Din förmåga att föra resonemang om svarens rimlighet i förhållande till problemsituationen.
Din förmåga att föra resonemang om svarens rimlighet i förhållande till problemsituationen.
Du för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet.
Du för välutvecklade och väl underbyggda resonemang om resultatens rimlighet.
Din förmåga att beskriva hur du tänkt göra/ har gjort.
Du beskriver på ett i huvudsak fungerande sätt.
Du beskriver på ett relativt väl fungerande sätt.
Du beskriver på ett väl fungerande sätt.
Din förmåga att se mer än en lösning på ett problem.
Du kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Du kan ge något förslag på alternativt tillvägagångssätt.
Du kan ge förslag på alternativa tillvägagångssätt.

Matematiska begrepp.

F
E
C
A
Din förståelse för olika matematiska begrepp och din förmåga att tillämpa dessa i olika sammanhang.
Du har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Du har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Du har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Din förmåga att beskriva begrepp med hjälp av matematiska uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Din förmåga att resonera kring hur matematiska begrepp relaterar till varandra.
Du kan föra enkla resonemang kring hur begreppen relaterar till varandra.
Du kan föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Du kan föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

Metodanvändning

F
E
C
A
Din förmåga att använda olika matematiska metoder.
Du kan välja och använda i huvudsak fungerande matematiska metoder.
Du kan välja och använda ändamålsenliga matematiska metoder.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder.
Din förmåga att anpassa metod efter aktuellt problem.
Du väljer metod med viss anpassning till sammanhanget.
Du väljer metod med relativt god anpassning till sammanhanget.
Du väljer metod med god anpassning till sammanhanget.

Matematiska färdigheter inom olika områden

F
E
C
A
Din förmåga att göra beräkningar och lösa uppgifter inom: Aritmetik Algebra Geometri Sannolikhet Statistik Samband och förändring
Du kan göra beräkningar och lösa uppgifter med tillfredsställande resultat.
Du kan göra beräkningar och lösa uppgifter med gott resultat.
Du kan göra beräkningar och lösa uppgifter med gott resultat.

Kommunikation

F
E
C
A
Din förmåga att redogöra och samtala om tillvägagångssätt.
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Din förmåga att anpassa dig efter syfte och sammanhang.
Du redogör med viss anpassning till syfte och sammanhang.
Du redogör med förhållandevis god anpassning till syfte och sammanhang.
Du redogör med god anpassning till syfte och sammanhang.
Din förmåga att framföra och bemöta matematiska argument.
Du framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: