👋🏼 Var med och förbättra Skolbanken med oss på Unikum. Svara på formuläret här
Här följer ett förslag till tidsplan där hela kursen motsvarar 100 %.
Lägg märke till att procenttalen, dvs andelen tid för varje kapitel, inkluderar ev fördjupningar, prov mm.
HT
1 Uttryck och ekvationer 30%.
Det är ca 30 timmar, så gör vi 3,6 timmar per vecka (för er med APL 10v/Lå) blir det ungefär 8-9 veckor från skolstart.
2 Linjära funktioner 30%
Här blir det motsvarande som är skrivet för kap 1
Jullov
VT
3 Geometri 15%
4 Funktioner 25 %
Sommarlov
Summa 100 %
E | C | A | |
---|---|---|---|
Begrepp
Förmåga att beskriva begrepp utifrån definitioner och begreppens egenskaper. Eleven ska kunna använda begreppen i beräkningar och problemlösning och känna till olika representationer av dem i olika sammanhang.
|
Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena i bekanta situationer.
|
Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena.
|
Testas inte på detta prov
|
Procedur
Kunna utföra procedurer t.ex. lösa rutinuppgifter. Klarar av att välja vilken procedur man ska använda i en given situation.
|
I arbetet hanterar eleven några enkla procedurer och löser uppgifter av standardkaraktär med viss säkerhet, både utan och med digitala verktyg.
|
I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
|
I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet och på ett effektivt sätt, både utan och med digitala verktyg.
|
Problemlösning
Ett matematiskt problem uppstår när problemlösaren inte på förhand har en metod för att lösa problemet. Olika strategier för att komma igång och ta sig igenom problemet krävs.
|
Eleven kan formulera, analysera och lösa matematiska problem av enkel karaktär. Dessa problem inkluderar ett fåtal begrepp och kräver enkla tolkningar.
|
Testas inte på detta prov.
|
Eleven kan formulera, analysera och lösa matematiska problem av komplex karaktär. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I problemlösning upptäcker eleven generella samband som presenteras med symbolisk algebra.
|
Modellering
Kunna beskriva en händelse eller ett samband från verkligheten eller en fiktiv händelse med en matematisk modell (värdetabell, graf, formel).
|
I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att tillämpa givna matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier och metoder.
|
I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja och tillämpa matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
|
Testas inte på detta prov
|
Resonemang
Förmåga att driva en matematisk argumentation med hjälp av begrepp och procedur till exempel i problemlösningssituationer. Resonemang förs på olika vis genom förklaring, slutledning, bevisföring och andra typer av logisk härledning.
|
Eleven kan föra enkla matematiska resonemang och värdera med enkla omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden.
|
Eleven kan föra välgrundade matematiska resonemang och värdera med nyanserade omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden.
|
Eleven kan föra välgrundade och nyanserade matematiska resonemang, värdera med nyanserade omdömen och vidareutveckla egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden.
|
Kommunikation
Kunna använda symboler, grafer, matematiska termer, ord, bilder, modeller och andra representationer för att kommunicera. Handlar också om att organisera och befästa det egna tänkandet och redogöra det för andra. Kommunikationen kan vara både muntlig och skriftlig.
|
Eleven uttrycker sig enkelt i tal och skrift samt använder matematiska symboler och andra representationer med viss anpassning till syfte och situation.
|
Eleven uttrycker sig med viss säkerhet i tal, skrift och handling samt använder matematiska symboler och andra representationer med viss anpassning till syfte och situation.
|
Testas inte på detta prov
|