Skolbanken – inspiration och utveckling från hela landet

Matematik ht-17 åk 6

Skapad 2017-08-27 08:41 i Smedingeskolan Norr Kungsbacka Förskola & Grundskola
Under våren kommer vi att arbeta med matematik individuellt och i grupp med följande områden: Decimaltal, procent och sannolikhet, geometri, koordinatsystem samt algebra.
Grundskola 6 Matematik
I matematik ska du lära dig genom att arbeta med problemlösning och resonera och diskutera matematikens begrepp och metoder för att lösa olika problem. Med hjälp av matematikundervisningen ska du känna tillit till din egen förmåga att lösa matematiska problem i skolan och i din vardag. Så här kommer du att arbeta: Du ska få genomgångar och delta i diskussioner. Du ska få arbeta med både enskilda uppgifter och gruppuppgifter, som känns lagom utmanande och stimulerande. Material: Matte-bok Matteborgen 6A och 6B, olika spel t.ex. på Ipad och olika problemlösnings-material kopplade till forskning om lärande. Så här kommer du att visa dina kunskaper: Delta i gruppdiskussioner och problemlösningar. Göra diagnoser och test som fokuserar på specifika kursmoment.

Innehåll

Arbetsområde: Taluppfattning, Procent, Geometri, Koordinatsystem och Algebra.

Uppgifter

  • Veckomål Geometri V42

  • Veckomål Geometri V42

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Rationella tal och deras egenskaper.
    Ma  4-6
  • Positionssystemet för tal i decimalform.
    Ma  4-6
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
    Ma  4-6
  • Tal i procentform och deras samband med tal i bråk- och decimalform.
    Ma  4-6
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
    Ma  4-6
  • Konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala och dess användning i vardagliga situationer.
    Ma  4-6
  • Symmetri i vardagen, i konsten och i naturen samt hur symmetri kan konstrueras.
    Ma  4-6
  • Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas.
    Ma  4-6
  • Tabeller och diagram för att beskriva resultat från undersökningar, såväl med som utan digitala verktyg. Tolkning av data i tabeller och diagram.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
Matte åk 6

Uttrycka och lösa problem och värdera valet av metoder

E
C
A
Problemlösning
Du kan på ett ganska bra sätt lösa enkla matteproblem som handlar om saker du känner till. Du väljer att använda metoder som passar ganska bra för att lösa problem.
Du kan på ett bra sätt lösa enkla matteproblem som handlar om saker du känner till. Du väljer att använda metoder som passar bra för att lösa problem.
Du kan på ett mycket bra sätt lösa enkla matteproblem som handlar om saker du känner till. Du väljer att använda metoder som passar mycket bra för att lösa problem.
Föra och följa matematiskt resonemang
Du kan beskriva på ett ganska bra sätt hur man kan lösa matteproblem. Du diskuterar på ett enkelt sätt om hur resultaten är rimliga. Du hjälper till att ge något förslag på andra sätt att lösa problem.
Du kan beskriva på ett bra sätt hur man kan lösa matteproblem. Du diskuterar på ett utvecklat sätt om hur resultaten är rimliga. Du ger något förslag på andra sätt att lösa problem.
Du kan beskriva på ett mycket bra sätt hur man kan lösa matteproblem. Du diskuterar på ett välutvecklat sätt om hur resultaten är rimliga. Du ger några förslag på andra sätt att lösa problem.

Använda och analysera matematiska begrepp och hur de hänger ihop med varandra

E
C
A
Samband mellan matematiska begrepp
Du har baskunskaper om matematiska begrepp. Du använder dem på ett ganska bra sätt i situationer som du känner till väl.
Du har goda kunskaper om matematiska begrepp. Du använder dem på ett bra sätt i situationer som du känner till.
Du har mycket goda kunskaper om matematiska begrepp. Du använder dem på ett mycket bra sätt i nya situationer.
Du kan beskriva matematiska begrepp med hjälp av saker, symboler, bilder och andra matematiska uttryck på ett ganska bra sätt.
Du kan beskriva matematiska begrepp med hjälp av saker, symboler, bilder och andra matematiska uttryck på ett bra sätt.
Du kan beskriva matematiska begrepp med hjälp av saker, symboler, bilder och andra matematiska uttryck på ett mycket bra sätt.

Välja och använda lämpliga matematiska metoder som passar bra för att göra beräkningar och lösa uppgifter

E
C
A
Välja och använda rätt metod
Du kan byta mellan olika sätt att beskriva matematiska begrepp. Du diskuterar på ett enkelt sätt hur begreppen hör ihop.
Du kan byta mellan olika sätt att beskriva matematiska begrepp. Du diskuterar på ett utvecklat sätt hur begreppen hör ihop.
Du kan byta mellan olika sätt att beskriva matematiska begrepp. Du diskuterar på ett välutvecklat sätt hur begreppen hör ihop.
Matematiska metoder
Du kan göra enkla uträkningar i aritmetik, algebra, geometri, sannolikhet, statistik, samband och förändring på ett ganska bra sätt. Du väljer och använder metoder som passar ganska bra för att göra uträkningarna.
Du kan göra enkla uträkningar i aritmetik, algebra, geometri, sannolikhet, statistik, samband och förändring på ett bra sätt. Du väljer och använder metoder som passar bra för att göra uträkningarna.
Du kan göra enkla uträkningar i aritmetik, algebra, geometri, sannolikhet, statistik, samband och förändring på ett mycket bra sätt. Du väljer och använder metoder som passar mycket bra för att göra uträkningarna.
Andra matematiska uttrycksformer
Du kan beskriva och prata på ett ganska bra sätt om hur man kan göra uträkningar. Du använder bilder, symboler, tabeller, grafer och andra matematiska uttryck som passar ganska bra ihop med situationen.
Du kan beskriva och prata på ett bra sätt om hur man kan göra uträkningar. Du använder bilder, symboler, tabeller, grafer och andra matematiska uttryck som passar bra ihop med situationen.
Du kan beskriva och prata på ett mycket bra sätt om hur man kan göra uträkningar. Du använder bilder, symboler, tabeller, grafer och andra matematiska uttryck som passar mycket bra ihop med situationen.

Förklara hur du tänkt och förstå hur andra har tänkt och använda olika matematiska uttryck för att diskutera frågeställningar, beräkningar och slutsatser

E
C
A
Matematikens språk i samtal och diskussioner
Du kan förklara hur du tänkt och förstå hur andra har tänkt när ni diskuterar matematik. Du motiverar dina förklaringar och ställer frågor så att diskussionen fortsätter på ett ganska bra sätt.
Du kan förklara hur du tänkt och förstå hur andra har tänkt när ni diskuterar matematik. Du motiverar dina förklaringar och ställer frågor så att diskussionen fortsätter på ett bra sätt.
Du kan förklara hur du tänkt och förstå hur andra har tänkt när ni diskuterar matematik. Du motiverar dina förklaringar och ställer frågor så att diskussionen fortsätter på ett mycket bra sätt.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: