Skolbanken – inspiration och utveckling från hela landet

MatteBorgen Direkt 5A

Skapad 2017-09-12 14:45 i Stenbergaskolan åk 4-9 Söderhamn
MatteBorgen Direkt 5A
Grundskola 4 – 6 Matematik
Matte Borgen är indelad i olika kapitel, där varje kapitel avslutas med ett Diagnostiskt prov Provets resultat ger sedan en bild av hur man går vidare; - repetition eller fördjupning.

Innehåll

Matteborgen 5A

 

Beskrivning av arbetsområde

Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden. Undervisningen ska bidra till att eleverna utvecklar intresse för matematik och tilltro till sin förmåga att använda matematik i olika sammanhang. Den ska också ge eleverna möjlighet att uppleva estetiska värden i möten med matematiska mönster, former och samband.

Kopplingar till läroplanen

Syfte 

  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • använda och analysera matematiska begrepp och samband mellan begrepp,
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • föra och följa matematiska resonemang, och
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

Mål

Varje kapitel har egna mål som vi arbetar med under veckorna fram till ett nytt diagnostiskt prov.

 

Undervisning och arbetsformer

Varje nytt kapitel (avsnitt) inleds med en genomgång av målen för det aktuella kapitlet och diskussion om olika matematiska problem. Eleverna arbetar sedan med uppgifterna både enskilt och i par/grupp.

 

Bedömning

Vi kommer att bedöma hur väl eleven har uppnått målen utifrån det vi arbetat med. Bedömningen sker i matrisen.

 

Bedömningsmatriser

Stora tal

När du arbetat med det här kapitlet ska du kunna

Läsa och skriva tal inom talområdet

 0-1 000 000

Ordna tal efter storlek

Addera, subtrahera, multiplicera och dividera inom talområdet

Multiplicera tal som har nollor på slutet. t.ex 40x500, 3900/100

 

Geometri

När du arbetat med det här kapitlet ska du kunna

Använda enheterna meter, kilo­meter och mil.

Räkna ut en rektangels area.

Enheterna cm2 och m2 för area

Förstå och använda skala

 

 

 

Decimaltal

När du arbetat med det här kapitlet ska du kunna

Skriva kronor och öre som decimaltal.

Skriva decimeter som tiondelar och centimeter som hundradelar av en meter

Skriva tal med hela, tiondelar och hundradelar

Storleksordna decimaltal

Addera och subtrahera enkla decimaltal.

Vikt och volym

När du arbetat med det här kapitlet ska du kunna

Jämföra och använda enheterna liter, deciliter och centiliter

Växla mellan olika volymenheterna.

Jämföra och använda enheterna Kilogram, hektogram och gram.

Växla mellan olika viktenheterna

 

Tabeller och diagram

När du arbetat med det här kapitlet ska du kunna

Använda en tidtabell

Läsa av och förstå linjediagram och cirkeldiagram

Rita linjediagram

Räkna ut medelvärde

 

 

Matriser

Ma
MATEMATIK

F
E
C
A
Problemlösning
Förmåga att lösa matematiska problem.
Kan med stöd lösa enkla problem i kända situationer.
Kan lösa enkla problem i kända situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Kan lösa enkla problem i kända situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Kan lösa enkla problem i kända situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Kommunikation
Förmåga att med hjälp av olika uttrycksformer berätta om hur du går tillväga.
Kan med stöd redogöra för och samtala om tillvägagångssätt.
Kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt.
Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt.
Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt.

F
E
C
A
kan med stöd använda bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer.
Använder bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Använder bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Använder bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Resonemang
Dinförmåga att beskriva hur du gått tillväga och förmågan att bedöma resultatets rimlighet.
Kan med stöd beskriva något tillvägagångssätt.
Beskriver tillvägagångssätt på ett i huvudsak fungerande sätt.
Beskriver tillvägagångssätt på ett relativt väl fungerande sätt.
Beskriver tillvägagångssätt på ett väl fungerande sätt.
Kan med stöd föra enkla och till viss del underbyggda resonemang.
För enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen.
För utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen.
För välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen.
Kan med stöd bidrar till att ge något förslag på alternativt tillvägagångssätt.
Bidrar till att ge något förslag på alternativt tillvägagångssätt.
Ger något förslag på alternativt tillvägagångssätt.
Ger förslag på alternativa tillvägagångssätt.
Kan med stöd föra och följa matematiska resonemang, i redovisningar och samtal,
Kan föra och följa matematiska resonemang, i redovisningar och samtal, genom att ställa frågor, framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Kan föra och följa matematiska resonemang, i redovisningar och samtal, genom att ställa frågor, framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Kan föra och följa matematiska resonemang, i redovisningar och samtal, genom att ställa frågor, framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Begrepp
Dina kunskaper om matematiska begrepp.
Har till viss del grundläggande kunskaper om matematiska begrepp.
Har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Kan med stöd beskriva olika begrepp.
Kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Kan med stöd i beskrivningarna växla mellan olika uttrycksformer.
Kan i beskrivningarna växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Kan i beskrivningarna växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Kan i beskrivningarna växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Metoder
Din förmåga att hantera olika matematiska metoder.
Kan med stöd använda olika matematiska metoder.
Kan välja och använda i huvudsak fungerande matematiska metoder.
Kan välja och använda ändamålsenliga matematiska metoder.
Kan välja och använda ändamålsenliga och effektiva matematiska metoder.
Väljer med stöd någon metod.
Väljer metod med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter med tillfredsställande resultat.
Väljer metod med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter med gott resultat.
Väljer metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter med mycket gott resultat.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: