Skolbanken – inspiration och utveckling från hela landet

Samband och funktioner

Skapad 2017-12-06 16:17 i Sturegymnasiet Halmstad
Gymnasieskola Matematik
Linjära och ickelinjära samband Förståelse för koordinatsystem, punkter, funktioner och problemlösning.

Innehåll

Planering ma1b funktioner ht17

Förkunskaper:

·      Uttryck/ Ekvationer

·      De 4:a räknesätten (allmän aritmetik)

Centralt innehåll:

Samband och förändring

·      Begreppet funktion, definitions- och värdemängd samt egenskaper hos linjära funktioner och potens- och exponentialfunktioner.

·      Representationer av funktioner, till exempel i form av ord, gestaltning, funktionsuttryck, tabeller och grafer.

·      Skillnader mellan begreppen ekvation, algebraiskt uttryck och funktion.

Problemlösning:

·      Strategier för matematisk problemlösning inklusive användning av digitala medier och verktyg.

·      Matematiska problem av betydelse för privatekonomi, samhällsliv och tillämpningar i andra ämnen.

Kunskapskrav Betyget E

·      Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena i bekanta situationer. I arbetet hanterar eleven några enkla procedurer och löser uppgifter av standardkaraktär med viss säkerhet, både utan och med digitala verktyg.

·      Eleven kan formulera, analysera och lösa matematiska problem av enkel karaktär. Dessa problem inkluderar ett fåtal begrepp och kräver enkla tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att tillämpa givna matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier och metoder. Eleven kan föra enkla matematiska resonemang och värdera med enkla omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståen- den. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling med inslag av matematiska symboler och andra representationer.

·      Genom att ge exempel relaterar eleven något i kursens innehåll till dess betydelse inom andra ämnen, yrkesliv, samhällsliv och matematikens kulturhistoria. Dessutom kan eleven föra enkla resonemang om exemplens relevans.

Veckoplanering:

V

Innehåll:

Sid:

Uppgifter:

Läxa:

45

Avläsning av grafer, koordinat-system

184-187

4001, 4002, 4003, 4004, 4007, 4008, 4009, 4010, 4011

Gör om 4 tal hemma!

 

Värdetabeller, rita grafer

188-195

4013, 4014, 4015, 4016, 4017,4018, 4019, 4022, 4023, 4024, 4025, 4031, 4032

Gör om 4 tal hemma!

46

Skrivsättet f(x), proportionalitet,

197-202

4033, 4034, 4035, 4036, 4037, 4038, 4039, 4040, 4043, 4044, 4045, 4046, 4047, 4048, (4049, 4050, 4051)

Gör om 4 tal hemma!

 

Funktionen y=x2, Exponentialfunktioner,

204-208

4052, 4053, 4056, 4057, 4058, 4059, 4060, 4062,

Gör om 4 tal hemma!

47

Utvecklingssamtalsdag, repetera det vi gjort och flera utmaningar 4A.

196

 

 

 

Litet test på det vi gjort, grafisk lösning,

209-211

Tillsammans i klassrummet

 

48

Definitions- och värdemängd.

216-217

4080, 4081, 4082,4083, upptäck och visa

Gör om 4 tal hemma!

 

Test 4A och Test 4B

225-227

A: 1-5, B: 1-6, 9

Gör om 4 tal hemma!

49

Blandade uppgifter

220-223

 

Gör om 4 tal hemma!

 

Se ovan

 

 

Gör om 4 tal hemma!

50

Repetition och frågestund

 

 

Gör om 4 tal hemma!

 

Prov

 

 

 

51

Prov

 

 

 

 

Jullov!

 

 

 

Fråga! Fråga! Fråga!

Om man inte hinner klart med uppgifterna på lektionen så måste man göra klart hemma!

Kopplingar till läroplanen

  • Centralt innehåll
  • Begreppen funktion, definitions- och värdemängd samt egenskaper hos linjära funktioner och potens- och exponentialfunktioner.
    Mat  -
  • Representationer av funktioner, till exempel i form av ord, gestaltning, funktionsuttryck, tabeller och grafer.
    Mat  -
  • Skillnader mellan begreppen ekvation, algebraiskt uttryck och funktion.
    Mat  -
  • Kunskapskrav
  • Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av flera representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med säkerhet mellan olika representationer. Eleven kan med säkerhet använda begrepp och samband mellan begrepp för att lösa komplexa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet och på ett effektivt sätt, både utan och med digitala verktyg.
    Mat  A
  • Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
    Mat  C
  • Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena i bekanta situationer. I arbetet hanterar eleven några enkla procedurer och löser uppgifter av standardkaraktär med viss säkerhet, både utan och med digitala verktyg.
    Mat  E
  • Eleven kan formulera, analysera och lösa matematiska problem av komplex karaktär. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I problemlösning upptäcker eleven generella samband som presenteras med symbolisk algebra. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja, tillämpa och anpassa matematiska modeller. Eleven kan med nyanserade omdömen utvärdera resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
    Mat  A
  • Eleven kan formulera, analysera och lösa matematiska problem. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja och tillämpa matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
    Mat  C
  • Eleven kan formulera, analysera och lösa matematiska problem av enkel karaktär. Dessa problem inkluderar ett fåtal begrepp och kräver enkla tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att tillämpa givna matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier och metoder.
    Mat  E
  • Eleven kan föra välgrundade och nyanserade matematiska resonemang, värdera med nyanserade omdömen och vidareutvecklar egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med säkerhet i tal, skrift och i handling samt använder matematiska symboler och andra representationer med god anpassning till syfte och situation.
    Mat  A
  • Eleven kan föra välgrundade matematiska resonemang och värdera med nyanserade omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling samt använder matematiska symboler och andra representationer med viss anpassning till syfte och situation.
    Mat  C
  • Eleven kan föra enkla matematiska resonemang och värdera med enkla omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling med inslag av matematiska symboler och andra representationer.
    Mat  E
  • Genom att ge exempel relaterar eleven något i några av kursens delområden till dess betydelse inom andra ämnen, yrkesliv, samhällsliv och matematikens kulturhistoria. Dessutom kan eleven föra välgrundade och nyanserade resonemang om exemplens relevans.
    Mat  A
  • Genom att ge exempel relaterar eleven något i några av kursens delområden till dess betydelse inom andra ämnen, yrkesliv, samhällsliv och matematikens kulturhistoria. Dessutom kan eleven föra välgrundade resonemang om exemplens relevans.
    Mat  C
  • Genom att ge exempel relaterar eleven något i kursens innehåll till dess betydelse inom andra ämnen, yrkesliv, samhällsliv och matematikens kulturhistoria. Dessutom kan eleven föra enkla resonemang om exemplens relevans.
    Mat  E

Matriser

Mat
Samband och funktioner

Rubrik 1

Samband och funktioner
E
D
C
B
A
Begrepp
Procedur
Problemlösning
Modellering
resonemang/Kommunikation
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: