Skolbanken – inspiration och utveckling från hela landet

Åk 9 Rymdgeometri

Skapad 2018-01-09 13:17 i Stenhammarskolan 7-9 Flen
Grundskola F Matematik

Innehåll

Rymdgeometri

Detta ska du kunna när vi läst området

  • Kunna rita och namnge olika rymdgeometriska kroppar (kub, rätblock, cylinder, kon, pyramid, klot och prisma)

  • Kunna räkna ut volymen på olika figurer (rätblock, kub, cylinder) med formeln V=B x h, eller V=(B xh)/3 (pyramid och kon)

  • Kunna förstå vad Begränsningsarea (arean på alla sidor runt en figuer) är och kunna räkna ut den.

  • Kunna förstå hur areaskalan och volymskalan förändras när längdskalan t.ex fördubblas. Alltså hur mycket större blir arean på en figur om längdskalan dubblas eller hur mycket volymen förändras när längdskalan t.ex dubblas.

  • Kunna förstå vad likformighet är och vad som händer med en figur och dess sidor när den förminskas eller förstoras. Du ska också kunna räkna ut de olika sidornas längder om du vet t.ex en av sidorna i en triangel.

  • Kunna omvandla mellan olika volymenheter (cm3, dm3, liter, milliliter)

  • Kunna använda det olika metoderna ovan i problemlösning och diskussioner.

  •  

Dessa filmer är  bra för att få hjälp med förklaringar om rymdgeometri kapitlet.

https://www.youtube.com/watch?v=F67yotyl35k&list=PLC0uA88O8pF8q9dt776is30Vee5jGQulC

 

Exempeluppgifter:

https://docs.google.com/document/d/1mWg4pvIzxeR6Od209WRgV9-JB6FQcLlxrgI6bU_iNqc/edit

 

Facit till Exempeluppgifter:

https://docs.google.com/document/d/139V59a_UEDG5pze3CUHoml_aOFxGNBADdBVsoFc2quo/edit

 

 

Kopplingar till läroplanen

  • Centralt innehåll
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
    Ma  7-9
  • Avbildning och konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala vid förminskning och förstoring av två- och tredimensionella objekt.
    Ma  7-9
  • Likformighet och symmetri i planet.
    Ma  7-9
  • Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
    Ma  7-9
  • Geometriska satser och formler och behovet av argumentation för deras giltighet.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Kunskapskrav
  • Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
    Ma  E 9

Matriser

Ma
Matematik 7-9

E
C
A
1.
Lösa problem, använda strategier och metoder samt formulera modeller.
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
2.
Resonera om val av tillvägagångssätt och resultatets rimlighet samt ge förslag på alternativ.
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
3.
Ha kunskaper om och använda matematiska begrepp.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
4.
Beskriva begrepp med matematiska uttrycksformer.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
5.
Växla uttrycksformer och resonera kring deras relation.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
6.
Välja och använda matematiska metoder, göra beräkningar och lösa uppgifter.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
7.
Redogöra för och samtala om tillvägagångssätt, använda matematiska uttrycksformer.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
8.
Framföra och bemöta matematiska argument.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: