Hur ska vi jobba?
Undervisningen kommer att varvas mellan genomgångar och diskussioner, laborativa moment, problemlösning i grupp och enskild räkning. Nedan kommer en planering över de moment vi kommer att arbeta med. Räkna alltid minst en och en halv nivå, men gärna två.
Bas + nivå ett eller nivå ett + nivå två eller nivå två + nivå tre
Valet av nivå behöver inte vara statiskt, dvs du kan välja olika nivåer på olika kapitel/avsnitt av boken. Prova gärna på de svårare talen så ofta du kan och tänj dina egna gränser. Du har mycket att vinna på det! Läxa blir att hålla takten med planeringen och jobba hemma eller på läxhjälpen (onsdagar 14.30-15.30) så att du är i fas.
Länkar till filmer om varje avsnitt finns nedan i veckoplaneringen..
Vi avslutar kapitel 1 med ett prov tisdagen den 16 oktober.
Vecka |
Kapitel |
Sid |
Länk |
|
1.1 |
8-15 |
|
|
1.2 |
16-21 |
|
v.38 |
|
|
|
|
1.3 |
22-26 |
|
|
|
|
|
v.39 |
1.4 |
27-32 |
|
|
|
|
|
|
|
|
|
v.40 |
1.5 |
33-37 |
|
|
|
|
|
|
|
|
|
v.41 |
1.6 |
38-42 |
|
|
|
|
|
|
rep. |
43-57 |
|
v.42 |
|
|
|
|
PROV 1 |
16-okt |
|
Lycka till önskar Stina!
E | C | A | |
---|---|---|---|
Lösa problem med strategier, metoder & modeller
|
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
|
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
|
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
|
Resonemang om tillvägagångssätt & rimlighet
|
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
|
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
|
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
|
Använda matematiska begrepp
|
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
|
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
|
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
|
Beskriva med matematiska uttrycksformer
|
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
|
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
|
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
|
Uttrycksformer & begreppens relation
|
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
|
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
|
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
|
Välja och använda matematiska metoder
|
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
|
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
|
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
|
Redogöra för & samtala om tillvägagångssätt
|
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
|
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
|
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
|
Framföra och bemöta matematiska argument i resonemang
|
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
|
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
|
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
|