Skolbanken – inspiration och utveckling från hela landet

Matematik planering läsåret 18-19

Skapad 2018-10-16 12:39 i Roslagsskolan Norrtälje
Grundskola F Matematik
Grovplanering av läsåret

Innehåll

Grovplanering matematik

 

Vecka 36-41  Kapitel 1 Tal och Pythagoras sats

Vecka 41-43 Kapitel 4 (del av kapitel) Koordinater och funktioner

Vecka 44 Lov

Vecka 45 Prao

Vecka 46-49     Muntligt Nationellt prov onsdag vecka 46

                             Kapitel 2 Algebra

Vecka 3-8          Kapitel 3 Geometri

Vecka 9             Lov

Vecka 10-16     Kapitel 4 Samband, förändring, Procent

Vecka 17           Påsklov

Vecka 18-24    Kapitel 5 Sannolikhet och statistik

Vecka 20           Onsdag och fredag Nationella prov matematik

Matriser

Ma
test av Matematik åk 7-9

Problemlösning

F
E
C
A
Din förmåga att lösa problem genom att välja strategier och metoder och formulera matematiska modeller.
Du löser problem på ett i huvudsak frande sätt genom att välja metod/ strategi med viss anpassning till problemets karaktär. Du bidrar till att formulera modeller.
Du löser problem på ett relativt väl fungerande sätt genom att välja metod/ strategi med förhållandevis god anpassning till problemets karaktär. Du formulerar modeller som efter någon bearbetning fungerar.
Du löser problem på ett väl fungerande sätt genom att välja metod/ strategi med god anpassning till problemets karaktär. Du formulerar modeller som fungerar.
Din förmåga att föra resonemang om tillvägagångssätt och rimlighet i svaret.
Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet.
Du för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet.
Du för välutvecklade och väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet.
Din förmåga att se mer än en lösning på ett problem.
Du kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Du kan ge något förslag på alternativt tillvägagångssätt.
Du kan ge förslag på alternativa tillvägagångssätt.

Matematiska begrepp.

F
E
C
A
Din förståelse för olika matematiska begrepp och din förmåga att tillämpa dessa i olika sammanhang.
Du har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Du har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Du har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Din förmåga att beskriva begrepp med hjälp av matematiska uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Du kan beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan du växla mellan olika uttrycksformer.
Din förmåga att föra resonemang om hur olika matematiska begrepp relaterar till varandra.
Du kan föra enkla resonemang kring hur begreppen relaterar till varandra.
Du kan föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Du kan föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

Metodanvändning

F
E
C
A
Din förmåga att använda olika matematiska metoder.
Du kan välja och använda i huvudsak fungerande matematiska metoder.
Du kan välja och använda ändamålsenliga matematiska metoder.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder.
Din förmåga att anpassa metod efter aktuellt problem.
Du väljer metod med viss anpassning till sammanhanget.
Du väljer metod med relativt god anpassning till sammanhanget.
Du väljer metod med god anpassning till sammanhanget.

Matematiska färdigheter inom olika områden

F
E
C
A
Din förmåga att göra beräkningar och lösa uppgifter inom: Aritmetik Algebra Geometri Sannolikhet Statistik Samband och förändring
Du kan göra beräkningar och lösa uppgifter med tillfredsställande resultat.
Du kan göra beräkningar och lösa uppgifter med gott resultat.
Du kan göra beräkningar och lösa uppgifter med mycket gott resultat.

Kommunikation

F
E
C
A
Din förmåga att redogöra och samtala om tillvägagångssätt.
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer.
Din förmåga att anpassa dig efter syfte och sammanhang.
Du redogör med viss anpassning till syfte och sammanhang.
Du redogör med förhållandevis god anpassning till syfte och sammanhang.
Du redogör med god anpassning till syfte och sammanhang.
Din förmåga att framföra och bemöta matematiska argument.
Du framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt.
Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: