Skolbanken – inspiration och utveckling från hela landet

Matematik åk 6 HT-18

Skapad 2018-11-16 10:13 i Bergagårdsskolan Öckerö
En presentation för elever och föräldrar av ett arbetsområde inom ämnet matematik.
Grundskola 6 Matematik
Under detta arbetsområde kommer du att få utveckla dina kunskaper inom de fyra räknesätten. Du kommer att få arbeta med decimaltal, lära dig hur man ställer upp i algoritm och strategier för huvudräkning. Hur du använder dina kunskaper vid problemlösning i vardagliga situationer. Du kommer att få arbeta med skala, volym, att omvandla volymenheter och cirkelns area och omkrets. Vi kommer också arbeta med bråk, procent och proportionalitet

Innehåll

Elevdel

Vi kommer att få arbeta med matematik både teoretiskt och praktiskt. Vi kommer att ha gemensamma genomgångar från tavlan, praktiska övningar både i grupp och två och två och du kommer att arbeta enskilt i din bok.

Konkreta mål

Är att nå de nationella kunskapsmålen för åk 6. Se nedan.

Bedömning

Jag kommer bedöma dina kunskaper i ämnet genom diagnoser och prov och hur du deltar i matematiska diskussioner och grupparbeten.

Undervisning

Du kommer att få:
- delta gemensamma genomgångar från tavlan
- enskilt arbete i din bok
- arbeta med uppgifter i grupp
- arbeta med praktiska matematiska uppgifter, enskilt och i par och i grupp. 

Lgr11

I undervisningen arbetar vi mot målet att varje elev...

Syfte

Syftet med undervisningen är att varje elev skall utveckla sin förmåga att...

Kunskapskrav

Här nedan kan du läsa vilka kunskapskrav i kursplanen för matematik vi arbetar mot. Det är betygsnivå E som beskrivs.

Centralt innehåll

I kursplanen för matematik finns beskrivet vad undervisningen bör innehålla. Det kallas "centralt innehåll". Vårt arbetsområde berör det här centrala innehållet:

Kopplingar till läroplanen

  • kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet,
    Gr lgr11
  • kan lösa problem och omsätta idéer i handling på ett kreativt och ansvarsfullt sätt,
    Gr lgr11
  • kan lära, utforska och arbeta både självständigt och tillsammans med andra och känna tillit till sin egen förmåga,
    Gr lgr11
  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Positionssystemet för tal i decimalform.
    Ma  4-6
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
Bedömningsmatris - MATEMATIK, Bergagårdsskolan del 1 åk 6 HT-18

På väg
Kunskapskrav 1
Kunskapskrav 2
Kunskapskrav 3
Ny nivå
Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder.
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär. Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär. Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven kan lösa enkla problem i elevnära situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär. Eleven beskriver tillvägagångssätt på ett väl fungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Använda och analysera matematiska begrepp och samband mellan begrepp.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamåls enliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Föra och följa matematiska resonemang, och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget. I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget. I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Eleven kan redogöra för och samtala om tillväga gångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget. I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: