Skolbanken – inspiration och utveckling från hela landet

Matematik åk9 - Procent, kapitel 4

Skapad 2018-11-29 16:06 i Långsjöskolan Norrtälje
Matte Direkt åk9 kapitel 4
Grundskola 9 Matematik
Att kunna förstå vad procent är och att kunna räkna med procent är viktiga vardagskunskaper. Prisändringar, löneförhandlingar, räntesatser, sportprestationer och många andra saker är ofta angivna i procent. I detta avsnitt skall vi arbeta med att beräkna andelar, delar och det hela, procent och promille samt förändringsfaktor.

Innehåll

Mål – Syfte, centralt innehåll och konkretiserade mål

Mål

När du har arbetat med det här kapitlet ska du kunna

- Beräkna andelen, delen och det hela
- Förändringsfaktorer och upprepade procentuella förändringar
- Använda procentberäkningar i olika praktiska sammanhang (t.ex. ränta)
- Promille
- Procentenheter
- Bråkform,decimalform och procent

Begreppen:
Procentform
Bråkform
Decimalform
Delen
Det hela
Andelen
Förändringsfaktor
Ränta
Räntesats
Inlåningsränta
Procentenhet
Promille

Bedömning – Vad som skall bedömas och hur det går till. Kopplade kunskapskrav

Bedömning kommer att ske av din förmåga att:

- lösa problem

- resonera

- förstå och använda matematiska begrepp

- växla mellan olika begrepp och förstå hur de hänger ihop

- använda de metoder vi lär oss

 

Bedömningen kommer att ske genom att du aktivt deltar på lektionerna vid gemensamma genomgånger, parövningar, enskilt arbete och på det skriftliga provet onsdag 12 december. 

Uppgifter

  • Ma - prov med planering, procent

Kopplingar till läroplanen

  • Centralt innehåll
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Kunskapskrav
  • Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
    Ma  E 9
  • Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
    Ma  E 9
  • Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
    Ma  E 9
  • Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
    Ma  E 9
  • I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
    Ma  E 9
  • Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
    Ma  E 9

Matriser

Ma
Bedömningsmatris Matematik 7-9

Du har ej visat grundläggande kunskaper inom denna förmåga på kapitelprovet.
Betygsnivå E
Betygsnivå C
Betygsnivå A
Problemlösning
Förmågan att formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder.
  • Ma
  • Ma  E 9
  • Ma  C 9
  • Ma  A 9
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Begrepp
Förmågan att använda och analysera matematiska begrepp och samband mellan begrepp.
  • Ma
  • Ma  E 9
  • Ma  C 9
  • Ma  A 9
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Metoder
Förmågan att välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutin-uppgifter.
  • Ma
  • Ma  E 9
  • Ma  C 9
  • Ma  A 9
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Kommunikation
Förmågan att föra och följa matematiska resonemang och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
  • Ma
  • Ma  E 9
  • Ma  E 9
  • Ma  C 9
  • Ma  C 9
  • Ma  A 9
  • Ma  A 9
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: