Skolbanken Logo
Skolbanken
Logga in
keyboard_arrow_left

Kurser:

MATMAT02b

4. Potenser, logaritmer och budgetering

Antalet pingviner i en population har minskat från 12 000 individer till 9 500 individer på 9 år. Genom att lösa potensekvationen 12000∙x^9=9500 kan vi ta reda på den genomsnittliga procentuella minskningen per år. Om pingvinpopulationen sedan ökar exponentiellt med 4,5 % per år så kan man ställa upp exponentialfunktionen 9500∙1,045^x=12000 för att uppskatta hur många år det tar innan pingvinpopulationen åter är 12 000. Här är den obekanta x i exponenten. För att lösa en sådan ekvation är logaritmer till stor hjälp.

Gemensamt HUFB, Hälsinglands utbildningsförbund, GY - slutgallrad · Senast uppdaterad: 20 december 2018