Skolbanken – inspiration och utveckling från hela landet

Favorit matematik 3A, kap 1 - 4 HT 2019

Skapad 2019-06-18 10:51 i Egebyskolan Mjölby
Lpp utifrån Favoritmatematik 3A. Ett prov med en kommentar ges efter varje avslutad kapitel.
Grundskola 3 Matematik
I kap 1, kommer vi repetera och arbeta med tiokompisarna och hur du kan använda dem i ett högre talområde. Du kommer lära dig strategier i huvudräkning och uppställning med addition och subtraktion. Du kommer också arbeta med olika verktyg och hur man kan använda dessa vid uträkningar vid addition och subtraktion. I kap 2 kommer vi att repetera och fortsätta arbeta med sambandet ( upprepad addition ) mellan de två räknesätten addition och multiplikation. Vi kommer arbeta med och se samband mellan de olika multiplikationstabellerna 5 och 10, 10 och 100, 2 och 4, 4 och 8, 3 och 6, 9, 7. Den kommutativa lagen är egenskaper vid multiplikation och ett snabbt sätt att tänka och räkna. Det ska vi arbeta mycket med i detta kapitel så att ni blir superduktiga och supersnabba på att använda multiplikation. I kap 3 kommer vi att lära oss en ny regel - prioriteringsregeln. Den talar om vilket räknesätt vi ska räkna först om det finns flera räknesätt i ett tal. Vi lär oss att bilda uttryck utifrån olika bilder, vi kommer att arbeta mycket med problemlösning - att rita, skriva och räkna till olika uppgifter. Vi kommer arbeta med algoritmer i multiplikation (uppställning), minnessiffra, och ännu mer problemlösning. Vi kommer även arbeta med ett nytt arbetsområde - programmering. I Kap 4 kommer vi repetera division och lära oss om hur vi kan dela lika på ett visst antal men också om det blir något över när vi delat lika....

Innehåll

 Vad du ska lära dig

v.36 Repetition av år 2 matematik och bedömningsstödet skriftligt

v.37 - 41 diagram - kunna läsa av enkla tabeller, visar kunskap om hur de kan användas och beskriva resultatet. 

             meter och centimeter - jämföra och uppskatta längd. Rimlighet och kunna använda begreppen meter och centimeter. 

             omkrets  - namn på grundläggande geometriska objekt. Använder, beskriver och räknar begreppet omkrets för tvådimensionella figurer.  

             kilometer, meter och mil  (skala förstoring och förminskning) - jämförelse och uppskattningar av matematiska storheter, rimlighetsbedömning och uppskattningar.                     Kunna använda begreppen i längd. 

             vikt - mätning av massa och använda begreppen kilogram och gram

v. 41- 45 Kap 1

  • grundläggande kunskaper om de fyra räknesätten och naturliga tal
  • hur man delar upp tal
  • uttrycker kunskaper om samband mellan de olika räknesätten
  • använder utvecklingsbara metoder för att utföra beräkningar vid huvudräkning

v. 45 - 49 Kap 2

  • de fyra räknesättens egenskaper och samband
  • sambandet mellan addition och multiplikation (visar och använder sambanden mellan de olika räknesätten)
  • centrala metoder för beräkningar med naturliga tal, huvudräkning, genomföra beräkningar med multiplikation 
  • använder utvecklingsbara metoder för att utföra beräkningar i multiplikation med 5 och 10, 10 och 100, 2 och 4, 4 och 8, 3 och 6, 9, 7, 
  • multiplikationens egenskaper, kommutativa lagen - använder och förstår begreppet kommutativt och tillämpar lagen vid multiplikation
  • kan tyda och visa kunskap om enkla proportionella samband
  • problemlösning

49-51 Kap 3

  • centrala metoder för beräkningar med naturliga tal, grundläggande kunskap om matematiska begrepp, prioriteringsregler 
  • prioriteringsregeln - beskriver och förstår begreppet och använder enkla prioriteringsregler (multiplikation före addition)
  • problemlösning - förstå frågan i en textuppgift, använder olika strategier för att lösa ett problem, bilder, symboler, resultat och avgör om ett svar är rimligt.  
  • använder skriftliga och fungerande metoder för att utföra beräkningar med skriftliga metoder för multiplikation - multiplikationsalgoritm (uppställning) och minnessiffra 
  • tolkar vad ett matematiskt uttryck kan innebära och använder dem. 
  • Datalogiskt tänkande - Programmering. Hur entydiga instruktioner kan konstrueras, beskrivas och följas som grund för programmering. Symbolernas användning. 

Kap 4

  • räknesättet division
  • dess egenskaper och samband
  • användning i olika situationer
  • delningsdivision
  • använder utvecklingsbara metoder för att utföra beräkningar med delningsdivision i vid huvudräkning och division med rest
  • sambandet mellan räknesätten division och multiplikation

  Så här ska vi arbeta

  • ha genomgångar tillsammans med läraren inomhus och utomhus
  • arbeta enskilt samt med dina klasskamrater.
  • arbeta i matteboken.
  • arbeta med konkreta material.
  • träna matematik med appar (Skolplus och Edimia)
  • se på film

    Det här ska bedömas

  • jag kommer lyssna på dig när du diskuterar, samtalar och presenterar matematiska lösningar
  • du kommer få visa vad du kan med hjälp av bedömningsstödet från Skolverket, Mitt lärande (diagnostiskt prov ) och Nationella prov
  • jag kommer titta på hur du arbetar och löser uppgifter med problemlösning

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange antal och ordning
    Ma  1-3
  • Del av heltal och del av antal. Hur delarna kan benämnas och uttryckas som enkla bråk samt hur enkla bråk förhåller sig till naturliga tal.
    Ma  1-3
  • Naturliga tal och enkla tal i bråkform och deras användning i vardagliga situationer.
    Ma  1-3
  • De fyra räknesättens egenskaper och samband samt användning i olika situationer.
    Ma  1-3

  • Ma  1-3
  • Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  1-3
  • Rimlighetsbedömning i vardagliga situationer
    Ma  1-3
  • Matematiska likheter och likhetstecknets betydelse.
    Ma  1-3
  • Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas
    Ma  1-3
  • Grundläggande geometriska objekt, däribland punkter, linjer, sträckor, fyrhörningar, trianglar, cirklar, klot, koner, cylindrar och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
    Ma  1-3
  • Konstruktion av geometriska objekt. Skala vid enkel förstoring och förminskning.
    Ma  1-3
  • Vanliga lägesord för att beskriva föremåls och objekts läge i rummet.
    Ma  1-3
  • Symmetri, till exempel i bilder och i naturen, och hur symmetri kan konstrueras.
    Ma  1-3
  • Jämförelser och uppskattningar av matematiska storheter. Mätning av längd, massa, volym och tid med vanliga nutida och äldre måttenheter.
    Ma  1-3
  • Enkla tabeller och diagram och hur de kan användas för att sortera data och beskriva resultat från enkla undersökningar, såväl med som utan digitala verktyg.
    Ma  1-3
  • Olika proportionella samband, däribland dubbelt och hälften.
    Ma  1-3
  • Strategier för matematisk problemlösning i enkla situationer.
    Ma  1-3
  • Matematisk formulering av frågeställningar utifrån enkla vardagliga situationer.
    Ma  1-3
  • Hur entydiga stegvisa instruktioner kan konstrueras, beskrivas och följas som grund för programmering. Symbolers användning vid stegvisa instruktioner.
    Ma  1-3
  • Kunskapskrav
  • Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med viss anpassning till problemets karaktär.
    Ma   3
  • Eleven beskriver tillvägagångssätt och ger enkla omdömen om resultatens rimlighet.
    Ma   3
  • Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i vanligt förekommande sammanhang på ett i huvudsak fungerande sätt.
    Ma   3
  • Eleven kan beskriva begreppens egenskaper med hjälp av symboler och konkret material eller bilder.
    Ma   3
  • Eleven kan även ge exempel på hur några begrepp relaterar till varandra.
    Ma   3
  • Eleven har grundläggande kunskaper om naturliga tal och kan visa det genom att beskriva tals inbördes relation samt genom att dela upp tal.
    Ma   3
  • Eleven visar grundläggande kunskaper om tal i bråkform genom att dela upp helheter i olika antal delar samt jämföra och namnge delarna som enkla bråk.
    Ma   3
  • Dessutom kan eleven använda grundläggande geometriska begrepp och vanliga lägesord för att beskriva geometriska objekts egenskaper, läge och inbördes relationer.
    Ma   3
  • Eleven kan även använda och ge exempel på enkla proportionella samband i elevnära situationera.
    Ma   3
  • Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar med naturliga tal och lösa enkla rutinuppgifter med tillfredställande resultat.
    Ma   3
  • Eleven kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0-20, samt för beräkningar av enkla tal i ett utvidgat talområde.
    Ma   3
  • Vid addition och subtraktion kan eleven välja och använda skriftliga räknemetoder med tillfredställande resultat när talen och svaren ligger inom heltalsområdet 0-200.
    Ma   3
  • Eleven kan även avbilda och, utifrån instruktioner, konstruera enkla geometriska objekt.
    Ma   3
  • Eleven kan göra enkla mätningar, jämförelser och uppskattningar av längder, massor, volymer och tider och använder vanliga måttenheter för att uttrycka resultatet.
    Ma   3
  • Eleven kan beskriva och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då konkret material, bilder, symboler och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
    Ma   3
  • Eleven kan dessutom vid olika slag av undersökningar i välkända situationer avläsa och skapa enkla tabeller och diagram för att sortera och redovisa resultat.
    Ma   3
  • Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet, slumpmässiga händelser, geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet.
    Ma   3
  • Eleven kan hantera enkla matematiska likheter och använder då likhetstecknet på ett fungerande sätt.
    Ma   3

Matriser

Ma
Favoritmatematik 3A kap 1- 4

På väg att nå förväntade kunskaper
Når förväntade kunskaper
Visar mer än förväntade kunskaper
Taluppfattning och tals användning
Addition Subtraktion Division Multiplikation Huvudräkning Skriftliga räknemetoder Strategier
  • Ma   3
  • Ma   3
  • Ma   3
  • Ma   3
  • Ma   3
  • Ma   3
  • Ma   3
Algebra
Programmering Talföljder
  • Ma   3
Geometri
objekt (cirkel, rektangel, kvadrat, triangel, månghörning, öppen polygon, sträcka, linje, punkt m.m.) (klot, kub, omkrets enheter Klockan/hel och halv, kvart i och kvart över Analog Digital Timvisare Minutvisare Förflyttning av tid
  • Ma   3
  • Ma   3
Sannolikhet och statistik
Tabeller Diagram Mäta och enheter (cm, m, mm) Uppskatta
  • Ma   3
  • Ma   3
Samband och förändring
dubbelt och hälften
  • Ma   3
Problemlösning
Resonemang Uttryck Rimlighet
  • Ma   3
  • Ma   3
  • Ma   3
Begrepp
färre fler större mindre
  • Ma   3
  • Ma   3
  • Ma   3
  • Ma   3
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: