Skolbanken – inspiration och utveckling från hela landet

Matematik 9 2019/2020

Skapad 2019-08-15 13:04 i Genarps skola Lunds för- och grundskolor
Grundskola 9 Matematik
Första arbetsområdet är tal. Positiva och negativa tal, potenser och prefix.

Innehåll

Syfte

se nedan

Centralt innehåll

Taluppfattning, räkna med små och stora tal, bråk och procent, algebra och ekvationer, area och volym.

Arbetssätt

genomgångar, praktiska uppgifter, diskussioner, räkna enskilt och i grupp

Bedömning

Muntligt och skriftligt i diskussioner och på prov.

Se bedömningsmatris

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
    Ma  7-9
  • Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
    Ma  7-9
  • Tal i potensform. Grundpotensform för att uttrycka små och stora tal samt användning av prefix.
    Ma  7-9
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer.
    Ma  7-9
  • Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven.
    Ma  7-9
  • Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
    Ma  7-9
  • Avbildning och konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala vid förminskning och förstoring av två- och tredimensionella objekt.
    Ma  7-9
  • Likformighet och symmetri i planet.
    Ma  7-9
  • Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
    Ma  7-9
  • Geometriska satser och formler och behovet av argumentation för deras giltighet.
    Ma  7-9
  • Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer.
    Ma  7-9
  • Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem.
    Ma  7-9
  • Tabeller, diagram och grafer samt hur de kan tolkas och användas för att beskriva resultat av egna och andras undersökningar, såväl med som utan digitala verktyg. Hur lägesmått och spridningsmått kan användas för bedömning av resultat vid statistiska undersökningar.
    Ma  7-9
  • Bedömningar av risker och chanser utifrån datorsimuleringar och statistiskt material.
    Ma  7-9
  • Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
    Ma  7-9
  • Funktioner och räta linjens ekvation. Hur funktioner kan användas för att, såväl med som utan digitala verktyg, undersöka förändring, förändringstakt och samband.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Matematikmiljonen matris åk 7-9

Betyg F
-->
Betyg E
-->
Betyg C
-->
Betyg A
Problemlösning
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder
Du har ingen egen idé för att lösa problemet.
Du har något förslag till en idé om hur man löser problemet men kan inte fullfölja.
Du kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt.
Du påbörjar slutsats utan matematisk förklaring (formulerar slutsats utan att visa var den kommer ifrån)
Du kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt. Du har god förståelse och början till matematisk slutsats (formulerar slutsats som delvis bygger på matematiskt resonemang).
Du har god förståelse och formulerar slutsats med matematiskt bärande förklaring. Du kan lösa problem och kan välja en väl fungerande metod och för utvecklade resonemang om svarets rimlighet.
Du kan lösa problem i olika situationer genom att välja goda strategier och en väl fungerande metod. Du för välutvecklade resonemang om tillvägagånssätt och svarets rimlighet. Du kan ge förslag på alternativa tillvägagångssätt.
Begrepp
använda och analysera matematiska begrepp och samband mellan begrepp
Du saknar kunskaper om majoriteten av de matematiska begreppen.
Du har vissa kunskaper om matematiska begrepp. Ditt matematiska språk är inte acceptabelt.
Du har grundläggande kunskaper om matematiska begrepp och du kan använda dem i välkända sammanhang.
Du kan föra enkla resonemang kring hur begreppen relaterar till varandra.
Du har goda kunskaper om matematiska begrepp och relationer mellan begrepp.
Du kan med ett väl utvecklat matematiskt språk förklara olika begrepp och relationer till andra begrepp.
Du har ett komplett och väl utvecklat matematiskt språk. Du har mycket goda kunskaper om matematiska begrepp och för välutvecklade resonemang kring relationer till andra begrepp.
Metod
välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter
Du kan inte lösa enkla rutinuppgifter.
Du kan med hjälp, hitta en metod för att lösa enkla rutinuppgifter.
Du väljer en i huvudsak fungerande metod (hittar en metod som gör att du kan lösa problemet, visar med enstaka exempel).
DU hitta flera metoder som gör att du kan lösa problemet.
Du väljer en ändamålsenlig metod (en metod som fungerar bra för att lösa det aktuella problemet).
Du väljer ut den metod som passar bäst till problemet. DU kan ge flera exempel eller flera olika representationer, t.ex. diagram, bilder, ord mm)
Du väljer en väl fungerande metod (du väljer ut den metod som passar bäst och du kan motivera ditt val).
Resonemang
föra och följa matematiska resonemang
Du för inget resonemang kring metod eller rimlighet.
Du försöker föra ett resonemang kring metod eller/och rimlighet.
Du för enkla resonemang kring val av metod och rimlighet i resultatet.
Du kan beskriva din metod och resonera kring någon för- eller nackdel med metoden.
Du kan se för och nackdelar med olika metoder.
Du kan jämföra någon för- eller nackdel mellan olika metoder
Du kan jämföra olika metoders för- och nackdelar med väl underbyggda matematiska resonemang.
Kommunikation
använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser
Du lyssnar endast vid matematiska aktiviteter.
Du redogör endast för dina egna påståenden.
Du bemöter och argumenterar så att diskussionen till viss del förs framåt (bidrar med egna idéer och förklaringar någon gång). Du kan förklara din tankegång.
Du bidrar med egna idéer och förklaringar
Du bemöter och argumenterar så att diskussionen förs framåt, (tar del av andras argument och för diskussionen framåt). Du kan på ett tydligt sätt förklara din tankegång.
Du bemöter och argumenterar så att diskussionen fördjupas eller breddas. Du kan på ett effektivt sätt förklara din tankegång.
Du bemöter och argumenterar så att diskussionen fördjupas och breddas, (visar hög kvalitet i argumentation och resonemang). Ditt tillvägagånssätt är effektivt och ändamålsenligt gällande matematiska uttrycksformer.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: