Skolbanken – inspiration och utveckling från hela landet

Tal - åk 8 ht19

Skapad 2019-08-21 16:08 i Björkvallsskolan Uppsala
Grundskola 8 Matematik
I Europa dröjde det länge innan de negativa talen accepterades. "Ingenting kan ju vara mindre än ingenting" hävdade inflytelserika matematiker. På 1200-talet skrev matematikern Fibonacci en bok i handelsräkning. Där visade han att ett negativt tal kan betraktas som en förlust. Symbolerna för (+) och (-) började inte användas förrän på 1700-talet. De negativa talen markerades före det med en prick över talet.

Innehåll

Såhär kommer vi att arbeta:

På lektionerna varvar vi enskilt arbete, gruppuppgifter, genomgångar och diskussioner. Se bifogad planering!

 

När arbetsområdet är avslutat ska du kunna:

- jämföra tal i bråkform och i decimalform

- addera, subtrahera, multiplicera och dividera tal i bråkform och i decimalform

- förklara vad ett negativt tal är

- räkna med negativa tal

 

 

Viktiga begrepp inom området:

 Andel, bråk, negativt tal, motsatt tal, decimalform, bråkform, blandad form, förkorta, förlänga

Uppgifter

  • Planering området tal åk 8

Kopplingar till läroplanen

  • Centralt innehåll
  • Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
    Ma  7-9
  • Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
    Ma  7-9
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9

Matriser

Ma
Kunskapskraven Lgr 11 Åk 7-9

Kunskapskraven

  • Ma   formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma   använda och analysera matematiska begrepp och samband mellan begrepp,
  • Ma   välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • Ma   föra och följa matematiska resonemang, och
  • Ma   använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
E
C
A
Problemlösning
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Resonemang
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemanget framåt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatets rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Metod
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Kommunikation
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler,algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler,algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: