👋🏼 Var med och förbättra Skolbanken med oss på Unikum. Svara på formuläret här

Skolbanken – inspiration och utveckling från hela landet

Planering i matematik HT-19

Skapad 2019-09-17 12:25 i Abrahamsbergsskolan Stockholm Grundskolor
Matematikundervisning utifrån Matteborgen 6A.
Grundskola 6 Matematik
HT19 A-delen kapitel 1 och 2 Du kommer att lära dig att räkna med decimaltal och bråktal. Du kommer att få lära dig att räkna med procent och sannolikhet.

Innehåll

 

Förmågor:
Du kommer få möjlighet att utveckla följande förmågor i matematik:

  • lösa matematiska problem
  • använda, förstå och beskriva matematiska begrepp: t.ex. decimal, bråk, täljare, nämnare, addition, summa, produkt, faktor…
  • välja en lämplig metod för att göra beräkningar: t.ex. 23+23+23+23+23+23+23+23 eller 23*8
  • samtala om problemlösning, redogöra för frågeställningar, resonera och dra slutsatser


Målet med denna kurs är att du ska utveckla dessa förmågor inom följande arbetsområden:

  • Tal
  • Bråk
  • Procent
  • Sannolikhet

 

Under arbetets gång kommer vi att:

  • arbeta med Matteborgen 6A kapitel 1 och 2. 
  • ha genomgångar där vi samtalar kring ord och begrepp som är viktiga för förståelsen
  • arbeta med problemlösning, enskilt, i par och gruppvis
  • använda program på ipaden där vi bland annat löser  matematiska uppgifter, tränar färdighetsträning. 
  • arbeta laborativt 
 
Du kommer att redovisa ditt arbete genom att:
 
  • skriva tydliga beräkningar och lösningar i ditt räknehäfte
  • delta i samtal gruppvis och i helklass för att visa dina kunskaper
  • visa praktiskt att du kan arbeta med tex bråk
  • samarbeta kring problemlösning
  • visa dina kunskaper genom redovisning, diagnoser och provräkningar

 

Bedömning:
När vi har arbetat färdigt med kursen ska du:

  • förstå varför vi använder decimaler, storleksordna decimaltal, förstå betydelsen av deci, centi och milli, kunna räkna med decimaltal
  • kunna utföra beräkningar såsom multiplikation och division med 10, 100 och 1000 samt kort division.
  • Kunna multiplikationstabellerna 2-10
  • kunna läsa och skriva bråktal, veta vad som menas med täljare och nämnare, kunna använda begreppen bråkform och blandad form, kunna addera och subtrahera bråk med samma nämnare, kunna räkna ut en del av ett antal (3/5 av 20), kunna jämföra bråk
  • Kunna räkna ut hur mycket en viss procent  av någonting är
  • Kunna växla mellan bråkform, decimalform och procentform
  • Kunna förklara vad sannolikhet är och kunna räkna ut sannolikheten för att en händelse ska inträffa

 

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
    Ma  4-6
  • Tal i procentform och deras samband med tal i bråk- och decimalform.
    Ma  4-6
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
Matteborgen 6A

Rubrik 1

E
C
A
Lösa problem med strategier & metoder
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Beskriva tillvägagångssätt & resonera om rimlighet
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett väl fungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Använda matematiska begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Matematiska uttrycksformer
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Växla uttrycksform & resonera om begreppens relation
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Välja & använda matematiska metoder
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Redogöra för & samtala om tillvägagångssätt
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Föra och följa matematiska resonemang
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.