Skolbanken – inspiration och utveckling från hela landet

Matematik år 6, ht - 19, Kap 2

Skapad 2019-10-14 14:47 i Rävlanda skola Härryda
planering av kapitel 1
Grundskola 6 Matematik
Nu ska vi lära oss metoder för multiplikation och division och att kunna bedöma rimlighet i resultat vid dessa räknesätt. Hur väljer vi metod och hur förklarar och motiverar hur vi gör.

Innehåll

Andra kapitlet i boken handlar om att kunna multplicera och dividera större och mindre tal och att kunna hantera decimaler i multiplikation.

Under rubriken FILMER lägger jag in .... ja just det , filmer ... som jag hittat och som jag tycker förklarar metoder i det aktuella avsnittet på ett bra sätt. 

Alla uppgifter tidsmarkeras med det planerade provdatumet. 

Planeringen av hur långt de ska ha räknat framgår av uppgiften BETING:

Avsnitten är indelade i fyra delar, varav MINST 2 ska räknas. Beroende på hur bekväm varje elev känner sig med ett avsnitt kan man börja på antingen ETT, TVÅ, eller TRE. Blev det jättejobbigt på den delen man startade på  kommer jag att säga att man går tillbaka och färdighetstränar på den tidigare nivån. Om nivå ETT är kämpig kommer det att finnas en träningsbok att jobba med. Blir det inte tillräckligt utmanande så finns alltid extrauppgifter som kan utmana även den snabbaste.
KOM IHÅG: NOGGRANN är BÄST i matte! ;) (Sagan om haren och sköldpaddan gäller!)

 

 

Uppgifter

  • Matematik prov kapitel 2 Torsdag 5/12

  • Ord & Begrepp

  • Planering & Beting

  • Filmer

Matriser

Ma
Bedömningsmatris år 6 Matematik

Utveckla förmågan att...

F-nivå Ännu ej godtagbara kunskaper för årskursen
E-nivå Godtagbara kunskaper för årskursen
C-nivå Godtagbara kunskaper för årskursen
A-nivå Godtagbara kunskaper för årskursen
1
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder.
  • Ma
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
  • Ma
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett väl fungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
2
använda och analysera matematiska begrepp och samband mellan begrepp.
  • Ma
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
  • Ma
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
3
välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter.
  • Ma
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
4
föra och följa matematiska resonemang.
  • Ma
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
5
använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
  • Ma
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: