Skolbanken – inspiration och utveckling från hela landet

Geometri åk 7 (7d)

Skapad 2019-12-09 13:47 i Djupedalskolan Härryda
Grundskola 7 Matematik
I flera tusen år har människor haft behov av att mäta storleken av mark som ska delas upp, planteras eller säljas. Det har även funnits ett behov av att mäta och beräkna mängden material som behövs vid byggen och tekniska konstruktioner. Geometri kommer från grekiskan och betyder i sin ursprungliga form jordmätning. Ordet är sammansatt av geo som betyder jord och metrei´a som betyder mäta. I detta kapitel får du lära dig mer om olika geometriska figurer, avstånd, vinklar och area.

Innehåll

Det här kommer vi att jobba med

  • Enheter och prefix
  • Geometriska begrepp
  • Vinklar
  • Månghörningar och vinkelsumma
  • Omkrets
  • Introduktion till area
  • Area av rektanglar och parallellogram
  • Area av trianglar

Begrepp

Förekommande begrepp som du ska lära dig:

  • enheter

  • prefix

  • dimension

  • parallella linjer

  • diagonal

  • vinkel

  • vinkelben

  • vinkelspets

  • sidovinkel

  • månghörning

  • vinkelsumma

  • triangel

  • parallelltrapets

  • parallellogram

  • romb

  • rektangel

  • kvadrat

  • omkrets

  • area

Arbetssätt

  • Genomgångar och diskussioner i grupp och individuellt.

  • Eget arbete

  • Arbete i grupp

  • Diagnos

  • Skriftligt prov

Bedömning

  • Bedömningen avser din förmåga att använda ditt matematiska kunnande för att tolka och hantera olika slag av uppgifter och situationer, reflektera över och tolka dina resultat samt bedöma deras rimlighet.

  • Självständighet och kreativitet är viktiga bedömningsgrunder liksom klarhet, noggrannhet och färdighet.

  • En viktig aspekt av kunnandet är din förmåga att uttrycka dina tankar muntligt och skriftligt med hjälp av det matematiska symbolspråket.

  • Din förmåga att välja lämplig metod vid problemlösning.

  • Din förmåga att följa, förstå och pröva matematiska resonemang.

  • Din förmåga att skriftligt redovisa dina tankegångar.

  • Din förmåga att muntligt följa och delta i diskussioner och genomgångar.

 

Du bedöms under lektionerna både skriftligt och muntligt. Vi avslutar arbetsområdet med ett skriftligt prov. 

Kopplingar till läroplanen

  • Syfte
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • Centralt innehåll
  • Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
    Ma  7-9
  • Avbildning och konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala vid förminskning och förstoring av två- och tredimensionella objekt.
    Ma  7-9
  • Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
    Ma  7-9
  • Geometriska satser och formler och behovet av argumentation för deras giltighet.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9

Matriser

Ma
Kunskapskrav Matematik årskurs 9

Kunskapskrav för betyget i slutet av årskurs 9

Arbetar mot =>
E
C
A
Lösa problem med strategier, metoder och modeller
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till proble¬mets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god an¬passning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Resonemang om tillvägagångssätt och rimlighet
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Använda matematiska bergepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Beskriva med matematiska uttrycksformer
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Uttrycksform & begreppens relation
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Välja och använda matematiska metoder
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Redogöra för och samtala om tillvägagångssätt
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Framföra och bemöta matematiska argument i resonemang
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: